SciELO - Scientific Electronic Library Online

vol.48 issue6Effective magnetic moment of neutrinos in strong magnetic fieldsTheoretical studies of energy photoemission spectra (XPS) of S and SO2 adsorbed on Ni clusters by Hartree-Fock method author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X

Rev. mex. fis. vol.48 n.6 México Dec. 2002




Variational anisotropic model of Wannier excitons compared with fractional-dimensional space approach


M. del Castillo-Mussot, G.J. Vázquez, J.A. Reyes


Instituto de Física, Universidad Nacional Autónoma de México Apartado Postal 20-364, 01000 México, D.F., México. e-mail:


Recibido el 9 de enero de 2002.
Aceptado el 12 de julio de 2002.



Binding energy of Wannier excitons in a quantum well of thickness L is studied using two models: a two-parameter trial wave function and a fractional-dimensional space with dimension 2 ≤ α ≤ 3. Since both models provide quantitative measures of the exciton spatial anisotropy as L changes, we give physical arguments for a plausible definition of α = α(L).

Keywords: Electron states and collective excitations in multilayers; quantum wells; mesoscopic and nanoscale systems.



Se estudia la energía de amarre de excitones de Wannier en un pozo cuántico de ancho L utilizando dos modelos: una función de onda de prueba con dos parámetros y un espacio de dimensión fraccional con dimensión 2 ≤ α ≤ 3. Ya que ambos modelos proporcionan medidas cuantitativas de la anisotropía espacial del excitón al cambiar L, damos argumentos físicos para una plausible definición de α = α(L).

Descriptores: Estados electrónicos y excitaciones colectivas en multicapas; pozos cuánticos; sistemas mesoscópicos y de escala nanoscópica.


PACS: 73.21.-b; 02.90.+p





We acknowledge partial financial support by DGAPA-UNAM and CONACYT-México through Grants Nos. IN-114498 and 32293-E, respectively.



1. C. Kittel, Introduction to Solid State Physics, 5th Ed. (John Wiley & Sons, New York, 1976).         [ Links ]

2. P. Butcher, N.H. March and M. P. Tosi, Physics of low-dimensional semiconductor structures, (Plenum Press, NewYork, 1993);         [ Links ] T. Ando, Y. Arakawa, K. Furuya, S. Komiyama and H. Nakashima, Mesoscopic physics and electronics, (Springer-Verlag Berlin Heidelberg, 1998).         [ Links ]

3. F.H. Stillinger, Jour. Math. Phys. 18 (1977) 1224.         [ Links ]

4. K.G. Wilson, Phys. Rev. D 7 (1973) 2911.         [ Links ]

5. X.-F. He, Solid State Commun. 75 (1990) 111.         [ Links ]

6. X.-F. He, Phys. Rev. B 42 (1990) 11751.         [ Links ]

7. X.-F. He, Phys. Rev. B43 (1991) 2063.         [ Links ]

8. Y. Shinozuka and M. Matsuura, Phys. Rev. B 28 (1983) 4878; Phys. Rev. B 29 (1984) 3717.         [ Links ]

9. G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, Phys. Rev. B 26 (1982) 1974.         [ Links ]

10. T. Ando, A.B. Fowler and F. Stern, Rev. Mod. Phys. 54 (1982) 437.         [ Links ]

11 . G. Arfken, Mathematical Metods for physicist, (Addison-Wesley, Reading, Mass., 1976). Sec. 12.1.         [ Links ]

12. R. Loundon, Am. J. Phys. 27 (1959) 649.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License