SciELO - Scientific Electronic Library Online

 
vol.51 issue3Shallow travel-time tomography below southern Mexico author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Geofísica internacional

On-line version ISSN 2954-436XPrint version ISSN 0016-7169

Geofís. Intl vol.51 n.3 Ciudad de México Jul./Sep. 2012

 

Original paper

 

Trace elements geochemistry and origin of volcanic units from the San Luis Potosí and Río Santa María volcanic fields, Mexico: the bearing of ICP-QMS data

 

Alfredo Aguillón-Robles1*, Margarito Tristán-González1, Rubén Alfonso López-Doncel1, María Elena García-Arreola1, Joselin de Lourdes Almaguer-Rodríguez2 and René C. Maury3

 

1 Instituto de Geología, Universidad Autónoma de San Luis Potosí Av. Dr. Manuel Nava #5, Zona Universitaria San Luis Potosí, S.L.P. México. *Corresponding author: aaguillonr@uaslp.mx. E–mail: mtristan@uaslp.mx; rlopez@uaslp.mx; maria.garcia@uaslp.mx.

2 Área Ciencias de la Tierra; DES Ingeniería, Universidad Autónoma de San Luis Potosí Av. Dr. Manuel Nava #8 Zona Universitaria San Luis Potosí, S.L.P. México. E–mail: almaguerjocelyn@gmail.com.

3 Université Européenne de Bretagne Université de Brest CNRS; UMR 6538 Domaines Océaniques Institut Universitaire Européen de la Mer Place N. Copernic 29280 Plouzané France. E–mail: maury@univ–brest.fr.

 

Received: July 27, 2011;
accepted: March 15, 2012;
published on line: June 29, 2012.

 

Resumen

Dos campos volcánicos importantes separados por una estructura volcano-tectónica se desarrollaron en la porción meridional de la Mesa Central durante el Cenozoico en la etapa de máxima extensión continental, correspondiente a la porción SE de la Provincia de Cuencas y Sierras en la porción suroriental de la Sierra Madre Occidental. Las rocas volcánicas asociadas a estas estructuras tectónicas varían en composición desde basaltos subalcalinos a basanitas o andesitas basálticas hasta riolitas emplazadas desde el Eoceno y extendiéndose hasta el Cuaternario durante cinco eventos volcánicos. A partir de análisis químicos de unidades volcánicas representativas de los complejos volcánicos en el estado de San Luis Potosí, se interpreta que el vulcanismo derivó de la fusión de la cima del manto y por metasomatismo de la base de la corteza, ligado con grados pequeños de cristalización fraccionada, dando como resultado una diversidad magmática y multiepisódica durante el tiempo y espacio, que se asociaron a estructuras volcanánicas de la región de San Luis Potosí. La interpretación conjunta a los análisis químicos obtenidos por diferentes técnicas para elementos mayores y para elementos traza por el método ICP-QMS, ha ayudado a proponer nuevos modelos sobre el origen y emplazamiento de unidades volcánicas existentes en la región.

Palabras clave: campos volcánicos, unidades volcánicas, elementos traza, ICP–QMS, San Luis Potosí, México.

 

Abstract

Two main volcanic fields separated by a volcano-tectonic structure were emplaced in the southern part of San Luis Potosí state during the Cenozoic peak of continental extension in the SE portion of the Sierra Madre Occidental. The Eocene to Quaternary volcanic rocks associated to these structures range in composition either from subalkaline basalts to basanites or from basaltic andesite to rhyolites, and were emplaced during five magmatic events. New trace element analyses obtained by the ICP-QMS method show that the three oldest ones, ranging in age from middle Eocene to late Oligocene, emplaced potassic calc-alkaline intermediate to evolved lavas. These originated from subduction-related mafic magmas through open-system fractional cristallization coupled with assimilation and possibly melting of the continental crust. The two youngest volcanic phases (Miocene and Quaternary) emplaced intraplate subalkaline to alkaline basalt and basanites derived from variable melting degrees of enriched mantle.

Key words: volcanic fields, volcanic units, trace elements, ICP-QMS, San Luis Potosí, Mexico.

 

Introduction

Two main large volcanic structures are located in the southern portion of the San Luis Potosí State. The formation of the San Luis Potosí Volcanic Field (SLPVF) started during the Eocene with the eruption of andesitic lava flows (Labarthe-Hernández et al., 1982; Tristán-González et al, 2009a). Andesites, dacites and rhyolites were emplaced until late Oligocene (Labarthe-Hernández et al., 1982; Tristán-González, 1986; Aranda-Gómez et al., 1989; Labarthe-Hernández et al., 1991; 1992; Tristán-González et al., 2009a). They are either overlain or crosscut by basaltic intraplate lavas emitted sporadically from Miocene to Pleistocene. The building of the second structure, the Río Santa María Volcanic Field (RSMVF), was initiated by middle Eocene andesitic lava eruptions and followed by the emplacement of voluminous felsic volcanics during the Oligocene. These include a large volume of rhyolitic pyroclastic flows overlain by trachytic and andesitic lava flows. The pyroclastic eruptions were responsible of the Caldera Milpa Grande collapse (Grassel, 1979; Labarthe-Hernández et al., 1984; Tristán-González, 1987; Labarthe-Hernández et al., 1989). The RSMVF volcanism ended with sporadic andesitic lava flows interbedded with rhyodacites and basaltic andesites.

The previouslly mentioned volcanic fields are separated by the Villa de Reyes Graben volcano-tectonic structure (VRG) which shows a dominant NE-SW trend. The SLPVF and the western portion of the RSMVF were affected by high angle NW-SE normal faults and the blocks were tilted towards the NE (Figure 1). This system formed a complex pattern of domino faults and narrow tectonic grabens. In some of these grabens, the emplacement of rhyolitic pyroclastic flows, were alternated with basaltic lava flows, forming a typical bimodal volcanic association (Tristán-González, 1986; Aguirre-Díaz and Labarthe-Hernández, 2003; Torres-Aguilera, 2005; Torres-Hernández et al., 2006; Tristán-González et al., 2006; Tristán-González, 2008; Tristán-González et al., 2008; Rodríguez-Ríos and Torres-Aguilera, 2009).

These volcanic events occurred in the southern portion of the Mesa Central Physiographic Province (MC, Figure 1). This area is considered as belonging to the Magmatic Province of the Sierra Madre Occidental (SMOc), the origin of which has been discussed by several authors (Cameron et al., 1980; Cameron and Hanson, 1982; Graham et al., 1995; Smith et al., 1996; Ruiz et al., 1988; 1990; Bryan et al., 2000, 2002; Ferrari et al., 2002; 2005). Three alternative models have been proposed to explain the origin of the voluminous silicic volcanic cover of the SMOc. The first one involves partial melting of the continental crust (Cameron et al., 1980; Cameron and Hanson, 1982). It implies the uprise of large amounts of basaltic magmas from the mantle, which provided the heat necessary to melt the crust. The second hypothesis postulates that the felsic magmas, mainly rhyolitic, derived from the fractional crystallization of basaltic magmas generated in the mantle, with little or not contribution of the continental crust (Smith et al., 1996; Ruiz et al., 1988; 1990; Bryan et al., 2002). In the third (and the most complex) model, magmas originated by partial melting of the base of the lithosphere mixed whith existing magmas of felsic composition, and were extruded through faults and fissures associated to the cortical extension (Aranda-Gómez et al., 2007; Aguillón-Robles et al., 2009; Tristán-González et al., 2009b).

The volcanism associated to the formation of the SLPVF, intermediate to felsic in composition, is considered as a product of the partial melting of the Precambian lower continental crust (Ruiz et al., 1988; Aguillón-Robles et al., 1994; 1996; 1997; Orozco-Esquivel et al., 2002). Although fractional crystallization processes operated at a smaller scale, their influence was significant in the evolution of these magmas (Verma, 1984; Rodríguez-Ríos et al., 2007; Aguillón-Robles et al., 2009).

Given the existing controversy on the origin of the volcanism for this portion of the SMOc, we have used the ICP-QMS method recently developed in UASLP (Universidad Autónoma de San Luis Potosí) to obtain a set of new trace element data. The aim of this article is to show that these data allow us to constrain the various petrogenetic models discussed above, and to better understand the relationship between the activity of the volcanic fields and the volcano-tectonic structure of Villa de Reyes Graben.

 

Sampling of the geologic units

We sampled some representative volcanic units of the volcanic fields of SLP and Río Santa María, as well as volcanic units associated to the formation of Villa de Reyes Graben (Figure 1). The stratigraphy of this region was studied in detail by Labarthe-Hernández et al. (1982) and Tristán-González et al. (2009a); the names of the volcanic units were taken from the original work (Labarthe-Hernández, et al., 1982), which was named by petrographic criteria; however, subsequently chemical analysis showed they have different composition, as in the case of units named as Casita Blanca andesite, Portezuelo latite and Ojo Caliente trachyte, which fall in the field from basaltic-andesite to rhyolite (Figure 2), to update their names would be necessary to reinterpret them, because this nomenclature has been used in this way throughout the past literature. We collected 18 volcanic rock samples, which include: two basaltic-andesitic lava flows located in the SLPVF; three recent samples associated to "maar" type structures emplaced between 1.50 and 0.59 Ma (Tristán-González et al., 2009a); nine samples from the RSMVF, among which five are lava flows from Ojo Caliente unit (trachytic magma; Labarthe-Hernández et al., 1982) and four others are basaltic lava samples erupted along the regional faults and/or NW-SE trending fissures. The latter appeared event during the late Miocene (Barboza-Gudiño pers. com.), and are interpreted here for the first time as associated to the final volcanic events in this area. Finally, we sampled dacitic lavas associated to the VRG volcano-tectonic structure.

Casita Blanca andésite

Labarthe-Hernández et al. (1982) have termed Casita Blanca andesite a serie of andesitic to basaltic lava flows which mark the beginning of the SLPVF vulcanism. One of these lava flows crops out in the northwestern and northern parts of the volcanic field and in some stratigraphic windows located to the east of the SLPVF in the vicinity of Cerro de San Pedro (Labarthe-Hernández et al., 1982; Tristán-González et al., 2009b). It is a moderately porphyritic rock of greenish dark gray color, with ca. 5 modal % of phenocrysts of biotite and plagioclase in an aphanitic microlitic matrix, composed of plagioclase and biotite. The top of this flow ranges from 20 to 80 m thick, which rests over Mesozoic marine rocks and continental lacustrine sediment, contains abundant vesicles, some of them filled up with chalcedony. Whole rock K-Ar ages of 45.5 ± 1.1; 44.4 ± 1.0, and 42.4 ± 1.0 (middle Eocene) have been reported (Tristán-González et al., 2009a).

Ojo Caliente trachyte

This name applies to a ca. 180 m thick pile of trachytic lava flows which crop out mainly in the western portion of the RSMVF (Labarthe-Hernández et al., 1982); although in the present study, the collected samples classify as andesite, dacites and rhyolites (Figure 2). This unit overlies rhyolitic pyroclastic flows, the emplacement of which marked the start of volcanic activity in this volcanic field around 32 Ma (Labarthe-Hernández et al, 1982; Tristán-González et al, 2009a). These light gray colored moderately porphyritic lava contains ca. 5 modal% phenocrysts of sanidine and clinopyroxenes sometimes altered to iron oxides, set in a devitrified groundmass. Corresponding whole rock isotopic ages are 31.8 ± 0.7 and 31.6 ± 0.7 Ma, i.e. early Oligocene (Tristán-González et al., 2009a).

Portezuelo latite

Although the volcanic unit referred to as Portezuelo latite outcrops are within the SLPVF; its emplacement was associated to the main extension event which formed the volcano-tectonic structure of the VRG. Thus, its main outcrops are located all along this graben (Labarthe-Hernandez et al., 1982; Tristán-González, 1986; 2008; Tristán-González et al., 2009b). This unit is associated to a ca. 440 m thick pile of porphyritic lava flow of rhyolitic composition. These light gray color porphyritic rocks contain 10 to 15 modal% phenocrysts of sanidine, plagioclase and subordinated quartz, set in a microlitic groundmass bearing plagioclase, magnetite, zircon and apatite (Labarthe-Hernandez et al., 1982); in this study all the samples were according to their geochemistry classificated as rhyolites. The corresponding whole rock ages range from 30.6 ± 1.5 to 31.0 ± 0.7 Ma, i.e. early Oligocene (Labarthe-Hernández et al., 1982; Tristán-González et al., 2009a).

Zona Media basalt

The unit known as Zona Media basalt is a pile of fissural lava flows of basaltic-andesitic composition which were emitted from scoria cones and of blocky lava flows extruded along NW-SE trending faults and/or fissures. These lava flowed within depressions dug into sediments associated to the Valles-San Luis Potosí Platform, near San Ciro and Angostura SLP (Figure 1). This volcanic unit, located at the NE border of the RSMVF, has been associated to a Miocene intraplate event subsequent to volcanism of the SLPVF. These porphyritic basalt and andesites contain ca. 20 modal% phenocrysts of plagioclase, olivine and augite, embedded in a fine-grained plagioclase-and augite-bearing microlitic groundmass (Sánchez-García, 2009).

Las Joyas basalt

The youngest volcanic event recognized in the southern portion of the SLP state emplaced the Las Joyas basalt, a set of Quaternary pyroclastic flows and lava flows associated to "maar" type volcanic structures (Labarthe-Hernández et al., 1982). These vesicular basaltic lava flows contain a few percent phenocrysts of olivine altered to iddingsite, set in a groundmass bearing calcic plagioclase together with pigeonite and/or augite. They filled up the depressions of the local rugged topography, and were only covered in some sites by recent alluvial deposits. The whole rock K-Ar isotopic ages obtained for this volcanic unit are 1.50 ± 0.8 Ma; 1.01 ± 0.08 Ma and 0.59 ± 0.06 Ma (Tristán-González et al., 2009a).

 

Analytical Methods

Major elements analyses (Table 1) were obtained by X-ray fluorescence at the Institute of Geology UNAM (Universidad Nacional Autónoma de México). The samples were finely powdered in an agate grinder. The details of the analytical method are reported by Lozano and Bernal (2005). The trace element analyses (Table 2) were performed at the Geochemical Laboratory in the Institute of Geology of the UASLP (LGIG), by the ICP-QMS (Thermo Scientific Serie X2, inducted coupled plasma- quadrupole mass spectrometer) method. The analytical techniques are described in Almaguer-Rodrígez (2010).

 

Major element data

The samples are rather fresh, with LOI values (loss of ignition at 1,000°C) ranging from slightly negative values up to 2.60 and exceptionally to 3.22 wt.% (Table 1). Samples from Casita Blanca, Ojo Caliente and Portezuelo units are silica-oversaturated basaltic andesites, andesites, dacites and rhyolites (Figure 2). All of them display the usual major element features of K-rich calc-alkaline series (Figure 3; Peccerillo and Taylor, 1976), with typically low Na2O/K2O ratios. The alumina saturation index [Al2O3/(CaO+K2O+Na2O)] ratio range from 0.86 to 1.01 for the silica-rich units; a single sample (JAG27-03), has been determined as peralkaline [(Na2O+K2O)/Al2O3>1]. In Harker diagrams (not shown), TiO2, Fe2O3*, MgO, MnO, and CaO display negative correlations with SiO2, while K2O (Figure 3) and to a lesser extent Na2O (not shown) positive ones; the decrease of compatible elements and the increase of incompatible elements (mainly large ion lithophile elements) with SiO2 are potentially consistent with assimilation, fractional crystallization or coupled (AFC) processes. The Differentiation Index (DI) of Thornton and Tuttle (1960), varies from 58.6 to 89.7 for felsic units (Portezuelo latite and Ojo Caliente trachyte) and from 36.1 to 49.7 for the old mafic unit (Casita Blanca andesite).

The young mafic samples Zona Media basalt and Las Joyas basalt units include silica-saturated subalkaline basalts and silica-undersaturated (ne-normative) alkaline basalts, basanites and trachy-basalt (Figure 2), which display high contents in incompatible major element oxides (TiO2, Na2O, K2O; P2O5). Their FeO*/MgO ratios are rather low (less than 1.3) and their Mg numbers are scattered from 75.0 to 61.9. In contrast to the former group, they display relatively high Na2O/K2O ratios (from 1.8 to 2.8). In Harker diagrams (not shown), TiO2, Fe2O3*, MgO and P2O5 as well as K2O and K2O + Na2O (Figure 3) display negative correlations with SiO2. The two latter ones are not consistent with differentiation- or assimilation-related processes, but could indicate variations in partial melting degrees of an ultramafic source.

 

Trace element data

The trace element data for the analyzed samples, combined with the major element features discussed above, allows us to distinguish two lava types. The first group corresponds to old calcalkaline potassic lavas ranging in composition from Casita Blanca andesite to felsic lavas (Portezuelo latite and Ojo Caliente trachyte). It displays variable enrichment in Rb, Th, Yb and Ba, the contents of which increase together with SiO2 contents during magmatic differentiation and/or assimilation and mixing (Figure 4). The second group corresponds to the young subalkaline/alkaline lavas (Zona Media basalt and Las Joyas basalt). These are less evolved than the calc-alkaline ones according to their rather high contents in Ni, Cr and Co (Table 2). They also display high contents in most incompatible elements and especially in Nb (Figure 4).

In the multielement plots normalized to the Primitive Mantle (Figure 5; Sun and McDonough, 1989), calc-alkaline lavas display highly fractionated patterns, with positive spikes for most large ion lithophile elements (LILE, especially Rb, K and Pb), and strong negative anomaly in high field strength elements (HFSE: Nb, Ta, P, Zr, Hf and Ti). These features, as well as their highly fractionated rare earth element (REE) patterns, are characteristic of subduction-related calc-alkaline magmas. In addition, negative anomalies in Sr and Eu can indicate plagioclase fractionation during differentiation, while similar negative anomalies in Ti and P can be due to iron oxides and apatite fractionation, respectively. The patterns of the young subalkaline/alkaline lavas are enriched in the most incompatible elements. The highest enrichments are observed for Ba, Nb and Ta, and the light REE (Figure 5). Such features are typical of intraplate alkali basalts and related "OIB-type" lavas (Sun and McDonough, 1989; Wilson, 1989).

 

Discussion

It is important to obtain a large set of trace element data for the study of magmatic rocks because (i) they are much more numerous (ca. 80) than the major elements, (ii) they belong to several chemical groups with specific properties (e.g. the LILE, HFSE and REE), (iii) some of them, especially the HFSE, are relatively immobile during alteration, hydrothermalism and metamorphism, and therefore are good indicators of the nature of the protolith of old igneous rocks, and finally (iv) because of their concentrations, they vary considerably during magmatic processes such as partial melting, fractional crystallization, magma mixing and metasomatism. One of the most reliable analytical methods for them is the inducted coupled plasma - Quadrupole Mass Spectrometry (ICP-QMS, already implemented in the LGIG, UASLP). The method ICP-QMS used for this study (Almaguer-Rodríguez, 2010) is based on the combination of the procedures used for the ICP-AES at the Université de Bretagne Occidentale at Brest France (Cotten et al., 1985; inducted coupled plasma - atomic emission spectroscopy) and for the ICP-MS method at the University of Arizona (1997).

The volcanic units associated to the formation event of the San Luis Potosí Volcanic Field (Labarthe-Hernandez et al., 1982; Tristán-González et al., 2009a), have been emplaced simultaneously with other volcanic units that are associated either to the Río Santa María Volcanic Field (Labarthe-Hernandez et al., 1989; Tristán-González, 1987) or to the main extension event of the volcano-tectonic structure of Villa de Reyes Graben (Tristán-González, 1986; 2008). The corresponding structures have been identified in the southern portion of San Luis Potosí state (Figure 1), where five successive volcanic stages have been recognized (Tristán-González et al., 2009b).

Subalkaline and alkaline basalts, basanites and trachybasalts of intraplate type were emplaced during the two youngest stages, which occurred during the Miocene (23 to 21 Ma) in the RSMVF and the Quaternary in the SLPVF (Tristán-González et al., 2009a). Both Miocene and Quaternary lavas were considered as derived from a progressive partial melting of a peridotitic mantle (Aranda-Gómez et al., 2005). Our new data support this interpretation. Indeed, the REE and multielement patterns of these lavas (Figure 5) are rather smooth. They display no evidence of interaction with the continental crust, which would have resulted in positive LILE and negative HFSE anomalies, and more generally in a somewhat erratic behavior of incompatible trace elements. In addition, the variations observed in incompatible trace element plots (Figure 6) are consistent with variable partial melting degrees and limited fractional crystallization processes. The studied alkaline lavas are fairly similar to the Encinos Volcanic Field hawaiites located in the north of the San Luis Potosí state, which in addition have experienced some crustal contamination (Luhr et al., 1994).

The three older volcanic events emplaced successively (i) the Casita Blanca andesite (mid Eocene); (ii) dacitic to rhyolitic domes and pyroclastic deposits between 32 and 28 Ma in the SLPVF and contemporaneous trachytes and rhyolites in the RSMVF, such as the Ojo Caliente trachyte (Labarthe-Hernandez et al., 1982; Tristán-González et al., 2009a), and the Portezuelo latite associated to the main extension event that originated the VRG (Tristán-González, 1986); and finally (iii) rhyolitic magmas extruded between 28 and 26 Ma (Labarthe-Hernández et al., 1982; Tristán-González et al., 2009a), which belong to a bimodal volcanic series (Tristán-González, 2008; Tristán-González et al., 2009a; Rodríguez-Ríos and Torres-Aguilera, 2009). All these potassic calc-alkaline lavas display typical fractionated REE and multielement patterns (Figure 5). These patterns are consistent with their derivation from a mantle source metasomatized by LILE- and LREE- rich hydrous fluids and/or magmas ascending from a subducted oceanic slab. The intermediate/ evolved character of these lavas, their low MgO, Ni, Cr and Co contents, their negative Sr, Eu, Ti and P anomalies, as well as their trends in Figure 6 incompatible element plots, are consistent with their derivation from mafic magmas through fractionation of a plagioclase - olivine - pyroxene -titanomagnetite - apatite phenocryst assemblage (Aranda-Gómez et al, 2007; Aguillón-Robles et al, 2009). However, the displays in Figure 6 plots suggests that their evolution was controlled by more complex petrogenetic processes than closed-system fractional crystallization. Those can include assimilation coupled with fractional crystallization (AFC; DePaolo, 1981) or melting-assimilation-storage-homogeneization (MASH; Hildreth and Moorbath, 1988), both of them involving the chemical contribution of the lower or upper continental crust (Medina-Romero et al., 2005; Aguillón-Robles et al, 2009).

 

Conclusions

Combined major and trace element data allow us to divide the five magmatic events which emplaced the volcanic fields of San Luis Potosí and Río Santa María from Eocene to Pleistocene into two groups. The three oldest ones, ranging in age from middle Eocene to late Oligocene, emplaced potassic calc-alkaline intermediate (andesitic) to evolved (trachytic and rhyolitic) lavas. These originated from suduction-related mafic magmas through open-system fractional crystallization coupled with assimilation and possibly melting of the continental crust. In addition, mixing with the magma chamber may have contributed to the genesis of dacitic and trachytic lavas extruded along the SLPVF and RSMVF (Portezuelo latite and Ojo Caliente trachyte; Aguillón-Robles et al., 2009). Later, a fast extensional event formed a faulting pattern used for the ascent of magmas from the two youngest volcanic phases (Miocene and Quaternary). These emplaced mostly OIB-type subalkaline to alkaline basalt and basanites which derived from variable melting degrees of enriched mantle and experienced limited amounts of fractionation. The association between cortical extension and OIB-type intraplate magmatism is typical feature of the evolution of the Mesa Central of Mexico (Luhr et al., 1994; Tual, 2010; Rodríguez-León, 2012).

 

Acknowledgments

We thank José Rafael Barboza-Gudiño, Director of the Instituto de Geología, at the Universidad Autónoma de San Luis Potosí for the logistical and financial support to carry out the fieldwork and chemical analyses in the laboratory; and two anonymous reviewers for their comments and suggestions that allowed us to improve the final version of this manuscript. We are grateful to Erasmo Mata-Martínez technician of the Instituto de Geología at UASLP, for preparing the samples used in this work. To Blanca Lizeth Tristán-Hernández by the english text suggestions.

 

Bibliography

Aguillón-Robles A., Aranda Gómez J.J., Solorio Munguía J.G., 1994, Geología y tectónica de un conjunto de domos riolíticos del Oligoceno medio en el sur del Estado de San Luis Potosí, México. Rev. Mex. Cienc. Geol., 11(1), 29-42.         [ Links ]

Aguillón-Robles A., De la Huerta-Cobos M.L., Aranda Gómez J.J., 1997, Características geológicas de los domos félsicos del Campo Volcánico de San Luis Potosí. Actas INAGEQ, 3, 103-111.         [ Links ]

Aguillón-Robles A., Rodríguez-Ríos R., Leroy J.L., Aranda Gómez J.J., Marín-Solis J.D., 1996, Geología y características geoquímicas del Centro Volcánico de Pinos, Zac. Actas INAGEQ, 2, 3-8.         [ Links ]

Aguillón-Robles A., Tristán-González M., Aguirre-Díaz G.J., Bellon H., 2009, Syn-extensional intra-plate trachydacite-rhyolitic dome volca-nism of the Mesa Central, southern Sierra Occidental volcanic province, Mexico. J. Volcanol. Geother. Res., 187, 33-52.         [ Links ]

Aguirre-Díaz G.J., Labarthe-Hernández G., 2003, Fissure ignimbrites: fissure-source origin for voluminous ignimbrites of the Sierra Madre Occidental and its relationship with Basin and Range faulting. Geology, 31, 773-776.         [ Links ]

Almaguer-Rodríguez J.L., 2010, Estudio geoquímicos de elementos traza en unidades volcánicas del CVSLP: método ICP-MS (validación del método): San Luis Potosí, México. Tesis Ingeniería Geológica, Facultad de Ingeniería, UASLP, 89 pp.         [ Links ]

Aranda-Gómez J.J., Aranda-Gómez J.M., Nieto-Samaniego A.F., 1989, Consideraciones acerca de la evolución tectónica durante el Cenozoico de la Sierra de Guanajuato y la parte meridional de la Mesa Central, México, Méx. Boletín Instituto de Geología, UNAM, 8, 33-46.         [ Links ]

Aranda-Gómez J.J., Luhr J.M., Housh T.B., Valdez-Moreno G., Chávez-Cabello G., 2005, El volcanismo tipo intraplaca del Cenozoico tradío en el centro y norte de México: una revisión. Bol. Soc. Geol. Mex., 3, 187-226.         [ Links ]

Aranda-Gómez J.J., Molina-Garza R., McDowell F.W., Vasallo-Morales L.F., Ortega-Rivera M.A., Solorio-Munguía J.G., Aguillón-Robles A., 2007, The relationships between volcanism and extension in the Mesa Central: the case of Pinos Zacatecas, Mexico. Rev. Mex. Cienc. Geol., 24(2), 216-233.         [ Links ]

Bryan S.E., Ewart A., Stephes C.J., Parianos J., Downes P.J., 2000, The Whitsunday Volcanic Province, central Queensland, Australia: Lithological and Stratigraphic investigations of a silicic-dominated large igneous province. J. Volcanol. Geother. Res., 99, 55-78.         [ Links ]

Bryan S.E., Riley T.R., Jerram D.A., Leat P.T., Stephens C.J., 2002, Silicic volcanism: an undervalued component of large igneous province and volcanic rifted margins, en Menzies, M.A., Klemperer, S.L., Ebinger, C.J., Baker J. (eds.), Magmatic Rifted Margins.         [ Links ] Geol. Soc. Am. Spec. Paper, 362, 99-120.         [ Links ]

Cameron K.L., Cameron C., Babgy W.C., Moll E.J., Drake R.E., 1980, Petrologic characteristics of mid-Tertiary volcanic suites, Chihuahua, Mexico. Geology, 8, 87-91.         [ Links ]

Cameron K.L., Hanson G.N., 1982, Rare earth element evidence concerning the origin of voluminous mid-Tertiary rhyolitic ignimbrites and related volcanic rocks, SMO, Chihuahua, Mexico. Geochim. Cosmochim. Acta, 46, 1489-1503.         [ Links ]

Cotten J., Le Dez A., Bau M., Caroff M., Maury R.C., Dulski P., Fourcade S., Bohn M., Brousse R., 1995, Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem. Geology, 119, 115-138.         [ Links ]

DePaolo D.J., 1981, Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet. Sci. Lett., 53, 189-202.         [ Links ]

Ferrari L., López-Martínez M., Rosas-Elguera J., 2002, Ignimbrite flare up and deformation in the southern Sierra Madre Occidental, western Mexico: implications for the late subduction history of the Farallon plate. Tectonics, 21(4), 17-24, doi: 10.1029/2001TC001302.         [ Links ]

Ferrari L., Valencia-Moreno M., Bryan S., 2005, Magmatismo y tectónica de la Sierra Madre Occidental y su relación con la evolución de la margen occidental de Norteamérica. Bol. Soc. Geol. Mex., LVII (3), 343-378.         [ Links ]

Graham I.J., Cole J.W., Briggs R.M., Gamble J.A., Smith I.E.M., 1995, Petrology and petrogenesis of volcanic rocks from Taupo Volcanic Zone: a review. Jour. Volcanol. Geother. Res., 68, 59-87.         [ Links ]

Grassel P.C., 1979, The reconnaisance geology of the La Salitrera Mining District, San Luis Potosí, Mexico: Houston, U.S.A. Master of Sciences thesis, University of Texas, 251 pp.         [ Links ]

Hildreth W., Moorbath S., 1988, Crustal contributions to arc magmatism in the Andes of central Chile. Contrib. Mineral. Petrol., 98, 455-489.         [ Links ]

Labarthe-Hernández G., Jiménez-López L.S., 1991, Cartografía geológica 1:50,000 de las hojas Cerrito de Bernal, Santo Domingo, El Estribo y La Herradura, Estado de San Luis Potosí. Instituto de Geología, UASLP, Folleto Técnico 113, 62 pp.         [ Links ]

Labarthe-Hernández G., Jiménez-López L.S., 1992, Características físicas y estructura de lavas e ignimbritas riolíticas en la Sierra de San Miguelito, S. L. P. Instituto de Geología, UASLP, Folleto Técnico 114, 31 pp.         [ Links ]

Labarthe-Hernández G., Tristán-González M., Aranda-Gómez J.J., 1982, Revisión estratigráfica del Cenozoico de la parte central del estado de San Luis Potosí. Instituto de Geología, UASLP, Folleto Técnico 85, 208 pp.         [ Links ]

Labarthe-Hernández G., Tristán-González M., Aguillón-Robles A., Jiménez-López L.S., Romero A., 1989, Cartografía geológica 1:50 000 de las hojas El Refugio y Mineral El Realito, estados de San Luis Potosí y Guanajuato. Instituto de Geología, UASLP, Folleto Técnico 112, 76 pp.         [ Links ]

Labarthe-Hernández G., Tristán-González M., Aguillón-Robles A., 1984, Cartografía Geológica 1:50,000 Hoja Salitrera, S.L.P. Instituto de Geología y Metalurgia, UASLP, Folleto Técnico 94, 85 pp.         [ Links ]

Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., 1986, A chemical classification of volcanic rocks based on the total alcali-silica diagram. Jour. Petrol., 27, 745-750.         [ Links ]

Lozano R., Bernal J.P., 2005, Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Rev. Mex. Cienc. Geol., 22, 329–344.         [ Links ]

Luhr J.F., Aranda-Gómez J.J., Housh T.B., 1995, San Quintin Volcanic Field, Baja California Norte, México: Geology, Petrology and Geochemistry. J. Geophys. Res., 100(B6), 10353-10380, doi: 10.1029/95JB00037.         [ Links ]

Luhr J.F, Aranda-Gómez J.J., Piere J.G., 1994, Spinel-lherzolite-bearing Quaternary volcanic centers in San Luis Potosí, Mexico 1. Geology, Mineralogy, and Petrology. J. Geophys. Res., 94(B6), 7916-7940, doi: 10.1029/ JB094iB06p07916.         [ Links ]

Medina-Romero E., Aguillón-Robles A., Tristán-González M., Bellon H., Cotten J., 2005, Características geoquímicas del vulcanismo intermedio en la porción poniente del Campo Volcánico Río Santa María, en la región meridional del Estado de San Luis Potosí. Actas INAGEQ, 11, p. 108.         [ Links ]

Orozco-Esquivel M.T., Nieto-Samaniego A.F., Alaniz-Alvarez S.A., 2002, Origin of rhyolitic lavas in the Mesa Central, Mexico, by crustal melting related to extension. Jour. Volcanol. Geother. Res., 118, 37-56.         [ Links ]

Peccerillo A., Taylor S.R., 1976, Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58, 63-81.         [ Links ]

Rodríguez-Ríos R., Aguillón-Robles A., Leroy J.L., 2007, Evolución petrológica y geoquímica de un complejo de domos topacíferos en el Campo Volcánico de San Luis Potosí (México). Rev. Mex. Cienc. Geol., 24(3), 328-343.         [ Links ]

Rodríguez-Ríos R., Torres-Aguilera J.M., 2009, Evolución petrológica y geoquímica del vulcanismo bimodal oligocénico en el Campo Volcánico de San Luis Potosí (México). Rev. Mex. Cienc. Geol, 26 (3), 658-673.         [ Links ]

Ruiz J., Patchett P.J., Arculus R.J., 1988, Nd-Sr isotope composition of lower crustal xenoliths: evidence for the origin of mid-Tertiary felsic volcanics in Mexico. Contrib. Mineral. Petrol., 99, 36-43.         [ Links ]

Ruiz J., Patchett P.J., Arculus R.J., 1990, Reply to "Comments on Nd-Sr isotopic composition of lower crustal xenoliths: evidence for the origin of mid-Tertiary felsic volcanics in Mexico", by K.L. Cameron and J.V. Robinson. Contrib. Mineral. Petrol., 104, 615-618.         [ Links ]

Sánchez-García A.C., 2009, Descripción de posibles fallas sismogénicas regionales en la Zona Media del Estado de San Luis Potosí, SLP. Tesis Ingeniería Geológica, Facultad de Ingeniería, UASLP, 80 pp.         [ Links ]

Smith R.D., Cameron K.L, McDowell F.W., Niemeyer S., Sampson D.E., 1996, Generation of voluminous silicic magmas and formation of mid-Cenozoic crust beneath north-central Mexico-evidence from ignimbrites, associated lavas, deep crustal granulites, and mantle pyroxenites. Contrib. Mineral. Petrol., 123, 375-389.         [ Links ]

Sun S.S., McDonough W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes; In Saunders, A.D.; Norry, M.J. (eds), 1989; Magmatism in the Ocean Basins. Geol. Soc. Spec. Paper Publication, 42, 313-345.         [ Links ]

Rodríguez-León L., 2012, Evolución geológica del Campo Volcánico Salinas - Villa de Ramos. Maestría en Ciencias en Geología Aplicada, UASLP, 76 pp.         [ Links ]

Thornton C.P., Tuttle O.F., 1960, Chemistry of igneous rocks. I. Differentiation index. Am. Jour. Scien., 258, 664-684.         [ Links ]

Torres-Aguilera J.M., 2005, Caracterización petrográfica y geoquímica del vulcanismo bimodal en el semigraben de Bledos, en el Campo Volcánico de San Luis Potosí: San Luis Potosí, México. Tesis de Maestro en Ciencias, Facultad de Ingeneiría, UASLP, 159 pp.         [ Links ]

Torres-Hernández J.R., Labarthe-Hernádez G., Aguillón-Robles A., Gómez-Anguiano M., Mata-Segura J.L., 2006, The pyroclastic dikes of the Tertiary San Luis Potosí volcanic field: Implications on the emplacement of Panalillo ignimbrite. Geofís. Intl., 45, 243-253.         [ Links ]

Tual T., 2010, Quelles sont les relations entre les volcanisme paléogène et néogène du Champ volcanique de San Luis Potosi (Méxique). Mémoire Master 2; Institute Universitaire Européen de la Mer, Université de Bretagne Occidentale, Brest France, 57 pp.         [ Links ]

Tristán-González M., 1986, Estratigrafía y tectónica del Graben de Villa de Reyes, en los estados de San Luis Potosí y Guanajuato, México: San Luis Potosí, México. Instituto de Geología y Metalurgia, UASLP, Folleto Técnico 107, 91 pp.         [ Links ]

Tristán-González M., 1987, Cartografía geológica "Hoja Tierra Nueva", S.L.P., Esc. 1:50,000. Instituto de Geología, UASLP, Folleto Técnico 109, 103 pp.         [ Links ]

Tristán-González M., 2008, Evolución tectono-magmática durante el Paleógeno en la porción sur-oriental de la Mesa Central. Tesis Doctoral, Centro de Geociencias, UNAM, 207 pp.         [ Links ]

Tristán-González M., Labarthe-Hernández G., Aguillón-Robles A., Torres-Hernández J.R., Aguirre-Díaz G., 2006, Diques piroclásticos en fallas de extensión alimentadores de ignimbritas en el occidente del Campo Volcánico del Río Santa María, S.L.P. GEOS, 26, p. 163.         [ Links ]

Tristán-González M., Aguirre-Díaz J.G., Labarthe-Hernández G., Aguillón-Robles A., 2008, Tectono-volcanic control of fissure type vents for the 28 Ma Panalillo ignimbrite in the Villa de Reyes Graben, San Luis Potosí, Mexico. Earth and Environmental Science, 3, doi:10.1088/1755-1307/3/1/012026.         [ Links ]

Tristán-González M., Aguillón-Robles A., Barboza-Gudiño J.R., Torres-Hernández J.R., Bellon H., López-Doncel R.A., Rodríguez-Ríos R., Labarthe-Hernández G., 2009a, Geocronología y distribución espacial del Campo Volcánico de San Luis Potosí. Bol. Soc. Geol. Mex., 61(3), 287-303.         [ Links ]

Tristán-González M., Aguirre-Díaz G.J., Labarthe-Hernández G., Torres-Hernández J.J., Bellon H., 2009b, Post-Laramide and pre-Basin and Range deformation and implications for Paleogene (55-25 Ma) volcanism in central Mexico: A geological basis for a volcano-tectonic stress model. Tectonophysics, 471, 136-152, doi: 10.1016/j.tecto.2008.12.021.         [ Links ]

University of Arizona, 1997, Rock digestion: The University of Arizona: actualización 28 de abril de 1997, https://sites.google.com/a/email.arizona.edu/ruizresearchgroup/misc–procedures/rock–digestion.         [ Links ]

Verma S.P., 1984, Sr and Nd isotopic evidence for petrogenesis of Mid-Tertiary felsic volcanism in the mineral district of Zacatecas, Zac. (Sierra Madre Occidental), Mexico. Isotopic Geosciences, 1, 37-53.         [ Links ]

Verma S.P., Sotelo-Rodríguez Z.T., Torres-Alvarado I.S., 2002, SINCLAS: Standard Igneous Norm and Volcanic Rock Classification System. Comput. Geoscien., 28(5), 711-715.         [ Links ]

Wilson M., 1989. Igneous petrogenesis. A global tectonic approach. Unwin Hyman, London, 466 p.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License