SciELO - Scientific Electronic Library Online

 
vol.44 número1Subsidence of the Laguna Salada Basin, northeastern Baja California, Mexico, inferred from Milankovitch climatic changes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Geofísica internacional

versión On-line ISSN 2954-436Xversión impresa ISSN 0016-7169

Geofís. Intl vol.44 no.1 Ciudad de México ene./mar. 2005

 

Articles

Inter-well tracer tests in oil reservoirs using different optimization methods: A field case

J. Ramírez-Sabag 1  

O. Valdiviezo-Mijangos 1  

M. Coronado 1  

1Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, 07730, México D.F. México Email: ovaldivi@imp.mx


ABSTRACT

In the interpretation of inter-well tracer tests to determine reservoir properties in oil and geothermal reservoirs as well as in aquifers, different non-linear regression methods are used. Analytical flow models are employed to fit tracer breakthrough data in order to determine the free parameters in the models. Non-linearity can yield multiple solutions for the fitting parameters. Traditionally, a single optimization method and several initial parameter values are employed. This procedure is often cumbersome and computer time-consuming. Moreover, an initial point close to the global optimum must be provided, what in many field cases is not available. We propose an approach which employs several optimization methods simultaneously, using a few initial points. Thus, different solutions can be found in a relatively simple way, and the reliability of the solutions is improved.

KEY WORD: Tracer tests; inverse problem; non linear optimization methods; fluid transport; porous media

RESUMEN

En la interpretación de pruebas de trazadores entre pozos en yacimientos petroleros, geotérmicos y en acuíferos se emplean diversos métodos de regresión no lineal para determinar algunas de las propiedades físicas promedio del sistema roca fluido. Con este propósito se ajustan modelos analíticos a los datos de campo de surgencia del trazador y se determinan los parámetros libres del modelo. La no linealidad inherente al problema puede en ocasiones dar lugar a soluciones múltiples, las cuales corresponden a distintos mínimos locales. En la metodología de interpretación tradicional se hace uso de un solo método de optimización, y se considera diversos valores iniciales de los parámetros para analizar la existencia de varias soluciones. En general, este procedimiento resulta complicado y requiere de largos tiempos de cómputo. Además, para obtener resultados confiables es necesario proponer valores iniciales cercanos al óptimo global, los cuales en muchos de los casos de campo se desconocen. El empleo de distintos métodos de búsqueda para obtener el óptimo global resulta entonces una herramienta de gran utilidad. En este trabajo presentamos una nueva metodología que consiste en el uso simultáneo de varios métodos de optimización y de tan sólo pocos valores iniciales. De esta manera se pueden encontrar soluciones al problema inverso de forma relativamente simple y confiable.

PALABRAS CLAVES: Pruebas de trazadores; problema inverso; optimización no lineal; transporte de fluidos; medios porosos

Full text available only in PDF format.

BIBLIOGRAPHY

BEAR, J., 1972. Dynamics of Fluids in Porous Media. Dover Publications, New York. [ Links ]

BIGGS, M. C., 1975. Constrained Minimization Using Re-cursive Quadratic Programming Toward Global Optimization. North-Holland, 341-345. [ Links ]

BROYDEN, C. G., 1970. The convergence of a Class of Double-Rank Minimization Algorithms. J. Inst. Math. Applics. 6, 76-90. [ Links ]

COATS, K. H. and B. D. SMITH, 1964. Dead-end pore volume and dispersion in porous media. SPE paper #647. Presented at Annual Society of Petroleum Engineers Fall Meeting, 6-9 October, 1963, held in New Orleans. [ Links ]

FLETCHER, R. and M. J. D. POWELL, 1963. A Rapidly Convergence Descent Methods for Minimization. Computer Journal, 6, 163-168. [ Links ]

GILL, P. E.; W. MURRAY; M. A. SOUNDERS and M. H. WRIGTH, 1984. Procedures for Optimization Problems with a Mixture of Bounds and General Linear Constrains. ACM Trans. Math. Software, 10, 282-298. [ Links ]

GOLUB, G. H. and V. PEREYRA, 1973. The Differentiation of Pseudo-Inverse and Non Linear Least Square Problems whose Variable Separate. SIAM J. Numerical Analysis, 10 , (2), 413-431. [ Links ]

GOLFARB, D., 1970. A Family of Variable Metric Updates Derived by Variational Means. Mathematics of Computing, 24, 23-26. [ Links ]

ILIASSOV, P. and A. DATTA-GUPTA, 2001. Field-Scale Characterization of Permeability and Saturation Distribution using Partitioning Tracer Test: The Ranger Field, Texas. SPE paper #71320. Presented at Society Petroleum Engineers Annual Technical Conference and Exhibition held in New Orleans, 30 September-3 October 2001. [ Links ]

JENSEN, C. L., 1983. Matrix Diffusion an its Effect on the Modeling of Tracer Returns from the Fractured Geothermal Reservoir at Wairakei, New Zealand, Stanford Geothermal Program, Interdisciplinary Research in Engineering and Earth Sciences, Stanford University, California. [ Links ]

KREFT A. and A. ZUBER, 1978. On the physical Meaning of the Dispersion Equation and its Solution for Different Initial and Boundary Condition. Chem. Eng. Sc. 33, 1471-1480. [ Links ]

LEVENBERG, K. 1944. A Method for Solution of Certain Problems in Least Squares, Quart. Appl. Math., 2, 164-168. [ Links ]

MARQUARDT, D. 1963, An Algorithm for Least Square Estimations of Nonlinear Parameters. SIAM, J. Appl. Math, 11, 431-441. [ Links ]

NELDER, J. A. and R. MEAD, 1965. A Simplex Method for Simplex Minimization. Computer J., 7, 308-313. [ Links ]

OPTIMIZATION TOOLBOX USER'S GUIDE, 2000. The MathWorks, Inc. [ Links ]

RADKE, C. J. and J. GILLIS, 1999. A Dual Gas Tracer Technique for Determining Trapped Gas Saturation during Steady Foam Flow in Porous Media. SPE #20519. Pre sented at the Society Petroleum Engineers Annual Technical and Exhibition Conference, September 23-26, 1999, New Orleans LA. [ Links ]

RAMÍREZ, J.; F. RODRÍGUEZ and J. RIVERA, 1994, Tracer Test Interpretation in Naturally Fractured Reservoir. SPE #28691. Presented at the Society Petroleum Engineers Inter-Annual Petroleum Conference and Exhibition of México, October 10-13, 1994, Veracruz, México. [ Links ]

RAMÍREZ, J. 1988. Modelo Para Predecir el Flujo de Trazadores en Yacimientos Geotérmicos Naturalmente Fracturados, Ms. Sc. Thesis, División de Estudios de Posgrado de la Facultad de Ingeniería, UNAM, México. [ Links ]

ROSENBROCK, H. H., 1960. An Automatic Method for Finding the Greatest or Least Value of a Function. Computer J., 3, 175-184. [ Links ]

SHANNO, D. F., 1970. Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computing, 24, 647-656. [ Links ]

STEINICH, B., G. VELÁZQUEZ-OLIMAN, E. MARÍN and E. PERRY, 1996, Determination of the Ground Water Divide in the Karst Aquifer of Yucatán, México, Combining Geochemical and Hydrogelogical Data. Geofís. Int., 36, 153-159. [ Links ]

TANG, J. S. and P. ZHANG, 2000. Effect of mobile Oil on Residual Oil Saturation Measurement by Interwell Tracing Method. SPE #64627. Presented at the Society Petroleum Engineers Inter Annual Technical and Exhibition Conference, November 7-10, 2000, Beijing, China. [ Links ]

Received: December 11, 2003; Accepted: July 08, 2004

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License