SciELO - Scientific Electronic Library Online

 
vol.20 número2Ecuaciones para estimar el poder calorífico de la madera de cuatro especies de árbolesFertilización con boro en plantaciones de Eucalyptus urophylla S. T. Blake en Tabasco índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista Chapingo serie ciencias forestales y del ambiente

versão On-line ISSN 2007-4018versão impressa ISSN 2007-3828

Resumo

CRUZ-CARDENAS, Gustavo et al. Selection of environmental predictors for species distribution modeling in Maxent. Rev. Chapingo ser. cienc. for. ambient [online]. 2014, vol.20, n.2, pp.187-201. ISSN 2007-4018.  http://dx.doi.org/10.5154/r.rchscfa.2013.09.034.

Prior to conducting the modeling of the potential distribution of a species, it is advised to make a pre-selection of covariables because redundancy or irrelevant variables may induce errors in most modeling systems. In this study, we propose an automated method for a priori selection of covariables used in modeling. We used five typical species of the Mexican flora (Catopheria chiapensis, Liquidambar styraciflua, Quercus martinezii, Telanthopora grandifolia and Viburnum acutifolium) and 56 environmental covariables. Presence-absence matrices were generated for each species and were analyzed using logistic regression, and the resulting model of each species was evaluated via a bootstrap resampling. We modeled the distribution of five species using maximum entropy and employed three sets of environmental covariables. The precision of the models generated was evaluated with the confidence intervals for each receiver operating characteristic (ROC) curve. The confidence intervals of the resulting ROC curves showed no significant difference between (P < 0.05) the three predictive models generated; nevertheless, the most parsimonious model was obtained with the proposed method.

Palavras-chave : Remote sensing data; soil properties; automated selection of covariables.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons