SciELO - Scientific Electronic Library Online

 
vol.20 número2Ecuaciones para estimar el poder calorífico de la madera de cuatro especies de árbolesFertilización con boro en plantaciones de Eucalyptus urophylla S. T. Blake en Tabasco índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Resumen

CRUZ-CARDENAS, Gustavo et al. Selección de predictores ambientales para el modelado de la distribución de especies en Maxent. Rev. Chapingo ser. cienc. for. ambient [online]. 2014, vol.20, n.2, pp.187-201. ISSN 2007-4018.  http://dx.doi.org/10.5154/r.rchscfa.2013.09.034.

Antes de realizar el modelado de la distribución potencial de una especie, se recomienda hacer una preselección de covariables pues la redundancia o variables irrelevantes pueden inducir sesgos en la mayoría de los modelos. En este estudio, se propuso un método automatizado para la selección a priori de covariables utilizadas en el modelado. Se emplearon cinco especies típicas de la flora mexicana (Catopheria chiapensis, Liquidambar styraciflua, Quercus martinezii, Telanthopora grandifolia y Viburnum acutifolium) y 56 covariables ambientales. Se generaron matrices de presencia-ausencia para cada especie y se analizaron empleando regresión logística; el modelo resultante de cada especie se evaluó mediante un remuestreo bootstrap. La distribución de las cinco especies se modeló usando el algoritmo de máxima entropía y con el empleo de tres conjuntos de covariables ambientales. La precisión de los modelos generados se evaluó con intervalos de confianza de cada curva característica operativa del receptor (COR). Los intervalos de confianza de las curvas COR resultantes no mostraron diferencia significativa (P < 0.05) entre los tres modelos predictivos generados; sin embargo, el modelo más parsimonioso se obtuvo con el método propuesto.

Palabras llave : Datos de sensores remotos; propiedades de suelos; selección automatizada de covariables.

        · resumen en Inglés     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons