SciELO - Scientific Electronic Library Online

 issue43Assesing the Feature-Driven Nature of Similarity-based Sorting of VerbsExamining the Validity of Cross-Lingual Word Sense Disambiguation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO



On-line version ISSN 1870-9044


PAKRAY, Partha; PORIA, Soujanya; BANDYOPADHYAY, Sivaji  and  GELBUKH, Alexander. Semantic Textual Entailment Recognition using UNL. Polibits [online]. 2011, n.43, pp.23-27. ISSN 1870-9044.

A two-way textual entailment (TE) recognition system that uses semantic features has been described in this paper. We have used the Universal Networking Language (UNL) to identify the semantic features. UNL has all the components of a natural language. The development of a UNL based textual entailment system that compares the UNL relations in both the text and the hypothesis has been reported. The semantic TE system has been developed using the RTE-3 test annotated set as a development set (includes 800 text-hypothesis pairs). Evaluation scores obtained on the RTE-4 test set (includes 1000 text-hypothesis pairs) show 55.89% precision and 65.40% recall for YES decisions and 66.50% precision and 55.20% recall for NO decisions and overall 60.3% precision and 60.3% recall.

Keywords : Textual Entailment; Universal Networking Language (UNL); RTE-3 Test Annotated Data; RTE-4 Test Data.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License