SciELO - Scientific Electronic Library Online

vol.59 issue2Poincaré, la mecánica clásica y el teorema de la recurrenciaHarmonic oscillator position eigenstates via application of an operator on the vacuum author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física E

Print version ISSN 1870-3542


LUNA, J. L.; CORZO, H. H.  and  SAGAR, R. P.. Numerical evaluation of Bessel function integrals for functions with exponential dependence. Rev. mex. fís. E [online]. 2013, vol.59, n.2, pp.115-121. ISSN 1870-3542.

A numerical method for the calculation of Bessel function integrals is proposed for trial functions with exponential type behavior and evaluated for functions with and without explicit exponential dependence. This method utilizes the integral representation of the Bessel function to recast the problem as a double integral; one of which is calculated with Gauss-Chebyshev quadrature while the other uses a parameter-dependent Gauss-Laguerre quadrature in the complex plane. Accurate results can be obtained with relatively small orders of quadratures for the studied classes of functions.

Keywords : Bessel function integrals; Gaussian quadrature; Hankel transform; Gauss-Laguerre; Gauss-Chebyshev.

        · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License