SciELO - Scientific Electronic Library Online

 
vol.9 número2Combining Artificial Intelligence and Advanced Techniques in Fault-Tolerant ControlTransmission Electron Microscopy (TEM) Through Focused ION Beam (FIB) from Vitrified Chromium Wastes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

Resumen

LEDESMA-OROZCO, S et al. Hurst Parameter Estimation Using Artificial Neural Networks. J. appl. res. technol [online]. 2011, vol.9, n.2, pp.227-241. ISSN 2448-6736.

The Hurst parameter captures the amount of long-range dependence (LRD) in a time series. There are several methods to estimate the Hurst parameter, being the most popular: the variance-time plot, the R/S plot, the periodogram, and Whittle's estimator. The first three are graphical methods, and the estimation accuracy depends on how the plot is interpreted and calculated. In contrast, Whittle's estimator is based on a maximum likelihood technique and does not depend on a graph reading; however, it is computationally expensive. A new method to estimate the Hurst parameter is proposed. This new method is based on an artificial neural network. Experimental results show that this method outperforms traditional approaches, and can be used on applications where a fast and accurate estimate of the Hurst parameter is required, i.e., computer network traffic control. Additionally, the Hurst parameter was computed on series of different length using several methods. The simulation results show that the proposed method is at least ten times faster than traditional methods.

Palabras clave : Parameter estimation; time series; network traffic analysis; neural network.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons