SciELO - Scientific Electronic Library Online

 
vol.9 número2Development of a Synchronous-Generator Experimental Bench for Standstill Time-Domain TestsPlane-and Space-Filling Trees by Means of Chain Coding índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

Resumen

GARCIA-HERNANDEZ, M. de G. et al. Mixed Acceleration Techniques for Solving Quickly Stochastic Shortest-Path Markov Decision Processes. J. appl. res. technol [online]. 2011, vol.9, n.2, pp.129-144. ISSN 2448-6736.

In this paper we propose the combination of accelerated variants of value iteration mixed with improved prioritized sweeping for the fast solution of stochastic shortest-path Markov decision processes. Value iteration is a classical algorithm for solving Markov decision processes, but this algorithm and its variants are quite slow for solving considerably large problems. In order to improve the solution time, acceleration techniques such as asynchronous updates, prioritization and prioritized sweeping have been explored in this paper. A topological reordering algorithm was also compared with static reordering. Experimental results obtained on finite state and action-space stochastic shortest-path problems show that our approach achieves a considerable reduction in the solution time with respect to the tested variants of value iteration. For instance, the experiments showed in one test a reduction of 5.7 times with respect to value iteration with asynchronous updates.

Palabras clave : Markov decision processes; acceleration techniques; prioritization.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons