SciELO - Scientific Electronic Library Online

 
vol.8 número2Shock Performance of Different Semiactive Damping StrategiesControl of a Class of Sulfate Reducing Chemostat Via Feedback Polynomial Injection índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Artículo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión impresa ISSN 1665-6423

Resumen

LOPEZ-ESPINOZA, E. D.  y  ALTAMIRANO-ROBLES, L.. Reference Fields Analysis of a Markov Random Field Model to Improve Image Segmentation. J. appl. res. technol [online]. 2010, vol.8, n.2, pp. 260-272. ISSN 1665-6423.

En modelos de Campos Aleatorios de Markov (MRF) se emplean parámetros como el campo de referencia interno y externo. En este artículo, analizamos su influencia en la calidad de la segmentación final, y mostramos que, para segmentación de imágenes, un modelo MRF con una función de energía definida mediante un campo de referencia interno y uno externo no homogéneos, obtiene mejores calidades de segmentación que un modelo MRF definido a través de un solo campo de referencia interno homogéneo. El análisis de los modelos MRF es realizado en términos de la calidad de segmentación, tiempo computacional y pruebas de significancia estadística. Las pruebas de significancia mostraron que los resultados de segmentación obtenidos con el modelo MRF definido a través de campos de referencia no homogéneos son significativos en un nivel del 85% y 75%.

Palabras llave : Image segmentation; unsupervised segmentation; Markov random field; non-homogeneous random field.

        · resumen en Inglés     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License