SciELO - Scientific Electronic Library Online

 
vol.8 número2Shock Performance of Different Semiactive Damping StrategiesControl of a Class of Sulfate Reducing Chemostat Via Feedback Polynomial Injection índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Journal of applied research and technology

versión impresa ISSN 1665-6423

Resumen

LOPEZ-ESPINOZA, E. D.  y  ALTAMIRANO-ROBLES, L.. Reference Fields Analysis of a Markov Random Field Model to Improve Image Segmentation. J. appl. res. technol [online]. 2010, vol.8, n.2, pp. 260-272. ISSN 1665-6423.

En modelos de Campos Aleatorios de Markov (MRF) se emplean parámetros como el campo de referencia interno y externo. En este artículo, analizamos su influencia en la calidad de la segmentación final, y mostramos que, para segmentación de imágenes, un modelo MRF con una función de energía definida mediante un campo de referencia interno y uno externo no homogéneos, obtiene mejores calidades de segmentación que un modelo MRF definido a través de un solo campo de referencia interno homogéneo. El análisis de los modelos MRF es realizado en términos de la calidad de segmentación, tiempo computacional y pruebas de significancia estadística. Las pruebas de significancia mostraron que los resultados de segmentación obtenidos con el modelo MRF definido a través de campos de referencia no homogéneos son significativos en un nivel del 85% y 75%.

Palabras llave : Image segmentation; unsupervised segmentation; Markov random field; non-homogeneous random field.

        · resumen en Inglés     · texto en Inglés     · pdf en Inglés