SciELO - Scientific Electronic Library Online

vol.8 número2Shock Performance of Different Semiactive Damping StrategiesControl of a Class of Sulfate Reducing Chemostat Via Feedback Polynomial Injection índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados



Links relacionados

  • No hay artículos similaresSimilares en SciELO


Journal of applied research and technology

versión impresa ISSN 1665-6423


LOPEZ-ESPINOZA, E. D.  y  ALTAMIRANO-ROBLES, L.. Reference Fields Analysis of a Markov Random Field Model to Improve Image Segmentation. J. appl. res. technol [online]. 2010, vol.8, n.2, pp. 260-272. ISSN 1665-6423.

In Markov random field (MRF) models, parameters such as internal and external reference fields are used. In this paper, the influence of these parameters in the segmentation quality is analyzed, and it is shown that, for image segmentation, a MRF model with a priori energy function defined by means of non-homogeneous internal and external field has better segmentation quality than a MRF model defined only by a homogeneous internal reference field. An analysis of the MRF models in terms of segmentation quality, computational time and tests of statistical significance is done. Significance tests showed that the segmentations obtained with MRF model defined by means of non-homogeneous reference fields are significant at levels of 85% and 75%.

Palabras llave : Image segmentation; unsupervised segmentation; Markov random field; non-homogeneous random field.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License