SciELO - Scientific Electronic Library Online

 
vol.20 issue1Transfer of technology to produce biodiesel with filter cake in the sugar industry of GuatemalaEvaluation of oil palm empty fruit bunch wastes as adsorbent for the removal of reactive dyes from aqueous solutions author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingeniería, investigación y tecnología

On-line version ISSN 2594-0732Print version ISSN 1405-7743

Abstract

GUTIERREZ-URUETA, Geydy Luz et al. Performance estimation and optimization of an adiabatic H2O-Libr absorption system using artificial neural networks. Ing. invest. y tecnol. [online]. 2019, vol.20, n.1. ISSN 2594-0732.  https://doi.org/10.22201/fi.25940732e.2019.20n1.007.

The search for alternatives to curb climate change and its devastating consequences for today's society, leads to research environmentally friendly climate systems. To optimize or control them, artificial neural networks (ANN) is considered an effective option. Adiabatic absorption is based on separate design for heat and mass transfer process in order to reduce the size of equipment. This study deals with the application of ANN on the experimental results of a single effect water-lithium bromide adiabatic absorption facility and its optimization using an inverse ANN. Transient and steady state data were used to obtain three empirical models. The models developed correspond to the coefficient of performance (COP), cooling power and generation power of the facility. Steady state statistics consists of 219 experimental points obtained at different operating conditions. These data were used to train and test the steady state and transient ANN models. For transient statistics, 1445 values were considered for a period. In the validation data set, the results showed that simulations and the experimental data were in good agreement with an R> 0.98 for both steady state and transient models. A model for COP, based on the principle of accessibility of data, was developed including temperatures for the external fluid circuits with good results. The inverse neural model applied to transient data demonstrated satisfactory results as well, making possible the optimization of the facility. These results illustrate the adequacy in using an ANN with transient data in absorption systems, making it especially attractive for solar cooling applications.

Keywords : Adiabatic absorption; water-lithium bromide; absorption systems; artificial neural network; performance estimation; optimization..

        · abstract in Spanish     · text in English     · English ( pdf )