SciELO - Scientific Electronic Library Online

 
vol.17 número4La heurística LDMTP: Una metodología híbrida basada en el problema de transporte para el diseño óptimo de la distribución de plantaEliminación de magnesio de aleaciones de aluminio inyectando zeolita y cenoesferas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Ingeniería, investigación y tecnología

versão impressa ISSN 1405-7743

Resumo

RIOS-WILLARS, Ernesto; LINAN-GARCIA, Ernesto; BATRES, Rafael  e  GARZA-GARCIA, Yolanda. Performance Profiles of the Algorithms Immune Network Algorithm and Bacterial Foraging Optimization Algorithm in Benchmark Functions. Ing. invest. y tecnol. [online]. 2016, vol.17, n.4, pp.479-490. ISSN 1405-7743.

This paper reports the application of the performance profiles model comparing the numerical methods Immune Network (AiNet) and Bacterial Foraging Optimization Algorithm (BFOA) in 18 benchmark optimization functions. Specifically robustness, efficiency and execution time of these methods were compared in search spaces with local minima multiple, bowl-shaped, plate-shaped, valley-shaped, steep ridges and other known optimization functions as styblinski-tang and beale function. The results show that the method AiNet (Castro et al., 2002) is more robust than the BFOA method (Passino, 2010) for the case studies considered in this work. However there are differences in the efficiency (number of evaluated functions and convergence time) between both methods. BFOA is the algorithm with best perform in terms of the number of evaluated functions.

Palavras-chave : performance profile; benchmark functions; AiNet; BFOA; optimization.

        · resumo em Espanhol     · texto em Espanhol     · Espanhol ( pdf )