SciELO - Scientific Electronic Library Online

 
vol.22 número1A Neighborhood Combining Approach in GRASP's Local Search for Quadratic Assignment Problem SolutionsApplication of Multi-Criteria Decision Analysis to the Selection of Software Measures índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546

Resumo

LIMON, Yensen; BARCENAS, Everardo; BENITEZ-GUERRERO, Edgard  e  MEDINA, María Auxilio. Depth-First Reasoning on Trees. Comp. y Sist. [online]. 2018, vol.22, n.1, pp.189-201. ISSN 2007-9737.  https://doi.org/10.13053/cys-22-1-2776.

The μ-calculus is an expressive modal logic with least and greatest fixed-point operators. This formalism encompasses many temporal, program and description logics, and it has been widely applied in a broad range of domains, such as, program verification, knowledge representation and concurrent pervasive systems. In this paper, we propose a satisfiability algorithm for the μ-calculus extended with converse modalities and interpreted on unranked trees. In contrast with known satisfiability algorithms, our proposal is based on a depth-first search. We prove the algorithm to be correct (sound and complete) and optimal. We also describe an implementation. The extension of the μ-calculus with converse modalities allows to efficiently characterize standard reasoning problems (emptiness, containment and equivalence) of XPath queries. We also describe several query reasoning experiments, which shows our proposal to be competitive in practice with known implementations.

Palavras-chave : Calculus; automated reasoning; depth-first search; XPath.

        · texto em Inglês     · Inglês ( pdf )