SciELO - Scientific Electronic Library Online

 
vol.22 número1Inferences for Enrichment of Collocation Databases by Means of Semantic RelationsAn Overview of Ontology Learning Tasks índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión impresa ISSN 1405-5546

Resumen

LAVALLE, Jesús et al. Automatic Theorem Proving for Natural Logic: A Case Study on Textual Entailment. Comp. y Sist. [online]. 2018, vol.22, n.1, pp.119-135. ISSN 1405-5546.  https://doi.org/10.13053/cys-22-1-2778.

Recognizing Textual Entailment (RTE) is a Natural Language Processing task. It is very important in tasks as Semantic Search and Text Summarization. There are many approaches to RTE, for example, methods based on machine learning, linear programming, probabilistic calculus, optimization, and logic. Unfortunately, no one of them can explain why the entailment is carried on. We can make reasonings, with Natural Logic, from the syntactic part of a natural language expression, and very little semantic information. This paper presents an Automatic Theorem Prover for Natural Logic that allows to know precisely the relationships needed in order to reach the entailment in a class of natural language expressions.

Palabras llave : Textual entailment; automatic theorem proving; natural logic.

        · texto en Inglés     · Inglés ( pdf )