SciELO - Scientific Electronic Library Online

 
vol.22 número1Generating Aspect-based Extractive Opinion Summary: Drawing Inferences from Social Media TextsInferences for Enrichment of Collocation Databases by Means of Semantic Relations índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión impresa ISSN 1405-5546

Resumen

AMADOR PENICHET, Lisvandy; MAGDALENO GUEVARA, Damny  y  GARCIA LORENZO, Maria Magdalena. New Similarity Function for Scientific Articles Clustering based on the Bibliographic References. Comp. y Sist. [online]. 2018, vol.22, n.1, pp.93-102. ISSN 1405-5546.  https://doi.org/10.13053/cys-22-1-2763.

The amount of scientific information available on the Internet, corporate intranets, and other media is growing rapidly. Managing knowledge from the information that can be found in scientific publications is essential for any researcher. The management of scientific information is increasingly more complex and challenging, since documents collections are generally heterogeneous, large, diverse and dynamic. Overcoming these challenges is essential to give to the scientists the best conditions to manage the time required to process scientific information. In this work, we implemented a new similarity’s function for scientific articles' clustering in based on the information provided by the references of the articles. The use of this function contributes significantly to discover relevant knowledge from scientific literature.

Palabras llave : Scientific paper; similarity function; clustering.

        · texto en Inglés     · Inglés ( pdf )