SciELO - Scientific Electronic Library Online

vol.21 número3Customer Relationship Management Systemic Model in Hotelier Sector: Are the Hotel Companies Gaining Benefits with Practices Oriented to the Relationship with the Clients?Semantic-based Reconstruction of User’s Interests in Distributed Systems índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados




Links relacionados

  • Não possue artigos similaresSimilares em SciELO


Computación y Sistemas

versão impressa ISSN 1405-5546


LOPEZ-CABRERA, José D.  e  LORENZO-GINORI, Juan V.. Automatic Classification of Traced Neurons Using Morphological Features. Comp. y Sist. [online]. 2017, vol.21, n.3, pp.537-544. ISSN 1405-5546.

The great advances in the field of neuron tracing have made possible a high availability of free-access data in the Internet, which motivates the realization of automatic classifications. The increase of neuronal reconstruction databases makes the manual classification of neurons a time-consuming and tedious task for the analysts. Classification by human experts is also prone to inter- and intra-analyst variability due to the process’ inherent subjectivity. In this context, the need arises to find new descriptors having discriminative properties which allow separating the various neuron classes, and this constitutes currently an open problem. Such descriptors would contribute to improve the results of automatic classification. In this study the attention is focused on the use of new morphological features in supervised classification of traced neurons. Furthermore, we present a comparative analysis of different supervised learning algorithms oriented to the classification of reconstructed neurons. The results were validated using non-parametric statistical tests and they show the usefulness of the proposed solution.

Palavras-chave : Neuron tracing; morphological features; feature selection; automatic classification; non-parametric tests.

        · texto em Inglês     · Inglês ( pdf )