SciELO - Scientific Electronic Library Online

 
vol.17 número2Eliminación de frases y decisiones de división basadas en corpus para simplificación de textos en español índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión impresa ISSN 1405-5546

Resumen

REYES, José A.; MONTES, Azucena; GONZALEZ, Juan G.  y  PINTO, David E.. Classifying Case Relations using Syntactic, Semantic and Contextual Features. Comp. y Sist. [online]. 2013, vol.17, n.2, pp.263-272. ISSN 1405-5546.

This paper presents a classification of semantic roles using syntactic, semantic and contextual features. The aim of our work is to identify types of semantic roles involving events and their actors; therefore, we fulfill a feature analysis in order to select the best feature subset which improves the fulfillment of the task. In addition, we compare four classification algorithms: Support Vector Machine (SVM), k-nearest neighbor (k-NN), Bayes classifier and decision tree classifier C4.5. This comparison was made in order to analyze the performance of these algorithms with all features against relevant features for each semantic role category. In our experimentation, we obtain that feature selection improved the performance of algorithms in our classification task, since with relevant features we obtained the best performance of 84.6% with decision tree classifier C4.5. The results for the labeling task can be used for knowledge representation or ontology learning.

Palabras llave : Semantic roles classification; knowledge acquisition; natural language processing; machine learning.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons