SciELO - Scientific Electronic Library Online

 
vol.14 número1Generadores de malla tetraédricos y el cálculo de Eigenvalores con elementos de contornoAlgoritmo Eficiente Distribuido Δ-Causal para Sistemas Cooperativos Síncronos sobre Redes no Fiables índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão impressa ISSN 1405-5546

Resumo

NIETO GONZALEZ, Juan Pablo; GARZA CASTANON, Luis  e  MORALES MENENDEZ, Rubén. Multiple Fault Diagnosis in Electrical Power Systems with Dynamic Load Changes Using Probabilistic Neural Networks. Comp. y Sist. [online]. 2010, vol.14, n.1, pp.17-30. ISSN 1405-5546.

Power systems monitoring is particularly challenging due to the presence of dynamic load changes in normal operation mode of network nodes, as well as the presence of both continuous and discrete variables, noisy information and lack or excess of data. This paper proposes a fault diagnosis framework that is able to locate the set of nodes involved in multiple fault events. It detects the faulty nodes, the type of fault in those nodes and the time when it is present. The framework is composed of two phases: In the first phase a probabilistic neural network is trained with the eigenvalues of voltage data collected during normal operation, symmetrical and asymmetrical fault disturbances. The second phase is a sample magnitude comparison used to detect and locate the presence of a fault. A set of simulations are carried out over an electrical power system to show the performance of the proposed framework and a comparison is made against a diagnostic system based on probabilistic logic.

Palavras-chave : Fault Diagnosis; Multiple Faults; Probabilistic Neural Networks; Correlation Matrix; Eigenvalues; Power System; Dynamic Load Changes.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons