SciELO - Scientific Electronic Library Online

 
vol.13 número4Un Enfoque Híbrido en el Desarrollo de Robótica Basada en el ComportamientoUn Sistema Evolutivo Robusto para la Síntesis de Circuitos Analógicos índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión impresa ISSN 1405-5546

Resumen

GONZALEZ BARBOSA, Juan Javier et al. Construction of an Optimal Solution for a Real-World Routing-Scheduling-Loading Problem. Comp. y Sist. [online]. 2010, vol.13, n.4, pp.398-408. ISSN 1405-5546.

This work presents an exact method for the Routing-Loading-Scheduling Problem (RoSLoP). The objective of RoSLoP consists of optimizing the delivery process of bottled products in a company study case. RoSLoP, formulated through the well-known Vehicle Routing Problem (VRP), has been solved as a rich VRP variant through approximate methods. The exact method uses a linear transformation function, which allows the reduction of the complexity of the problem to an integer programming problem. The optimal solution to this method establishes metrics of performance for approximate methods, which reach an efficiency of 100% in distance traveled and 75% in vehicles used, objectives of VRP. The transformation function reduces the computation time from 55 to four seconds. These results demonstrate the advantages of the modeling mathematical to reduce the dimensionality of problems NP-hard, which permits to obtain an optimal solution of RoSLoP. This modeling can be applied to get optimal solutions for real-world problems.

Palabras llave : Optimization; Routing-Scheduling-Loading Problem (RoSLoP); Vehicle Routing Problem (VRP); rich VRP.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons