SciELO - Scientific Electronic Library Online

 
vol.67 issue3A concise synchrotron X-ray microdiffraction field guide for the Earth scientistsSurface Complexation Modelling of Arsenic and Copper Immobilization by Iron Oxide Precipitates Derived from Acid Mine Drainage author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Boletín de la Sociedad Geológica Mexicana

Print version ISSN 1405-3322

Abstract

CASTILLO, Francisco et al. Identification of diagenetic calcium arsenates using synchrotron-based micro X-ray diffraction. Bol. Soc. Geol. Mex [online]. 2015, vol.67, n.3, pp.479-491. ISSN 1405-3322.

In this work, we identify the type of calcium arsenates found in sediment samples from an aquifer located in Matehuala, San Luis Potosí, México. Sediments in contact with levels up to 158 mg/L of arsenic in neutral pH water were studied by X-ray diffraction, scanning electron microscopy coupled to energy dispersive X-ray analyses (SEM-EDS), and synchrotron based X-ray diffraction. Identification of these calcium arsenates by X-ray analysis has proved to be very difficult to achieve because the precipitates of interest are on the microscale and immerse in a matrix of calcite, gypsum, and quartz comprising nearly 100 % of the samples. Needle-like specimens composed of calcium, arsenic, and oxygen were, however, commonly observed in sediment samples during SEM-EDS analyses in backscattered mode. Synchrotron based X-ray analyses revealed some peaks that were compared with published data for guerinite, haindingerite, and pharmacolite suggesting that these were the calcium arsenates present in sediments, the calcium arsenates that control the solubility of arsenic in the contaminated aquifer in Matehuala, and the calcium arsenates that prevail in the long-term in the environment after cycles of dissolution and precipitation. The identification of these calcium arsenates is consistent with the environmental conditions prevailing at the study area and the SEM-EDS observations. However, its identification is not unequivocal as the comparison of experimental data collected in single crystal specimens against X-ray diffraction references collected in powders prevents a strictly proper identification of the specimens analyzed. In this way, scorodite was also identified by synchrotron based X-ray analyses however its presence is inconsistent with the environmental conditions and the calcium arsenate associations found in this study. Scorodite identification was therefore considered tentative. A thorough examination, with additional and/or improved analytical techniques, should be undertaken to find an environmentally sound explanation for the diffraction peaks assigned to scorodite, which might be from a clay a mineral, probably with no arsenic.

Keywords : calcium arsenates; arsenic contamination; guerinite; haindingerite; pharmacolite; diagenetic calcium arsenates.

        · abstract in Spanish     · text in English     · English ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License