SciELO - Scientific Electronic Library Online

 
vol.45 número1Comparación de los sistemas covarianza y relación de Bowen en la evapotranspiración de un viñedo bajo clima semi-áridoDiseño de índices espectrales de la vegetación usando curvas iso-suelo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Agrociencia

versión impresa ISSN 1405-3195

Resumen

AGUIRRE-SALADO, Carlos A. et al. Mapping leaf area index and canopy cover using hemispherical photography and SPOT 5 HRG data: regression and k-nn. Agrociencia [online]. 2011, vol.45, n.1, pp. 105-119. ISSN 1405-3195.

Leaf area index (LAI) is a useful variable for characterizing the dynamics and productivity of forest ecosystems. Canopy cover (COB), on the other hand, regulates the amount of penetrating light that controls certain light-dependent processes, and promotes the infiltration of rainfall as an environment hydrological service. This paper addresses the estimation of LAI and COB (%) using multispectral data from SPOT 5 satellite in stands of different ages in a managed forest of Pinus patula in Zacualtipán, Hidalgo, México. The LAI was obtained by the allometric calibration of optical measurements taken with hemispherical photographs (Pseudo r2=0.79). Geospatial estimates were made using two methods: the multiple linear regression analysis and the nonparametric estimator of the nearest neighbor (k-nn). The analysis of the results showed a high ratio between LAI calibrated (r2=0.93, RMSE=0.50; coefficient of determination and root mean squared error) and the COB (r2=0.96, RMSE=4.57 %), with the bands and spectral indices constructed from them. The average estimates for forested stands were: LAI = 6.5; COB=80 %. The estimates per hectare of both methods (regression and k-nn) were comparable between them; however, k-nn required a considerable computational effort in calculating the spectral distances between the target pixel and the pixels in the sample.

Palabras llave : Pinus patula; applied geomatics; satellite image; vegetation index; forest inventory; Hidalgo; México.

        · resumen en Español     · texto en Español     · pdf en Español