SciELO - Scientific Electronic Library Online

 
vol.36 número2Cyclonic circulation and climatology of SST, CHL and wind stress curl in a semi-enclosed bay (Bahía de La Paz, Gulf of California, Mexico)Regional flow climatology for central Mexico (Querétaro): A first case study índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Atmósfera

versão impressa ISSN 0187-6236

Resumo

CASALLAS-GARCIA, Alejandro; HERNANDEZ-DECKERS, Daniel  e  MORA-PAEZ, Héctor. Understanding convective storms in a tropical, high-altitude location with in-situ meteorological observations and GPS-derived water vapor. Atmósfera [online]. 2023, vol.36, n.2, pp.225-238.  Epub 02-Dez-2022. ISSN 0187-6236.  https://doi.org/10.20937/atm.53051.

We investigate convective storms over the Sabana de Bogotá, a high-altitude and densely populated area in the Colombian tropical Andes. Convective events are identified using infrared satellite images and in-situ precipitation data. As expected, convection shows a strong early-afternoon peak during the two rainy seasons. Previous studies hypothesize that early-afternoon westerly winds and their moisture advection from the warmer Magdalena valley are the main explanatory mechanism for intense storms. We find that early-afternoon westerlies are present in 78% of rainy season days, but convective events develop in only 26% of them. Thus, although westerlies seem necessary for convection due to the convergence they generate, they only occasionally generate storms and are therefore not a good predictor. Furthermore, reanalysis data indicate that precipitable water vapor (PWV) at the Magdalena valley is anomalously low during convective days, suggesting that moisture converges locally instead of being advected from the west. Based on composites of surface wind speed, air temperature, surface pressure, and GPS-derived PWV, we identify the most prominent signals associated with deep convection: a weaker than average wind speed throughout the morning, higher than normal values of surface air temperature towards noon, followed by an anomalous steep increase of PWV and wind speed. These features indicate that convection results from a strong diurnal forcing facilitated by convergence of westerly winds, combined with sufficient water vapor convergence, with a timescale of about 3 h. This highlights the relevance of high temporal resolution monitoring of PWV offered by Global Navigational Satellite System stations.

Palavras-chave : tropical convection; GPS meteorology; mountain meteorology.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )