SciELO - Scientific Electronic Library Online

vol.25 número1Decision trees to determine the possible drought periods in AnkaraEmission of methane and nitrous oxide from Vigna mungo and Vigna radiata legumes in India during the dry cropping seasons índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO



versión impresa ISSN 0187-6236


YUREKLI, K.; TAGHI SATTARI, M.; ANLI, A. S.  y  HINIS, M. A.. Seasonal and annual regional drought prediction by using data-mining approach. Atmósfera [online]. 2012, vol.25, n.1, pp.85-105. ISSN 0187-6236.

This study examines the seasonal regional drought analysis based on the standardized precipitation index (SPI) method and the decision tree technique which is a data-mining approach. The cumulative rainfall series for five reference periods (four seasonal and one annual series) were constituted by using monthly rainfalls from 17 stations in Cekerek Watershed, Turkey, which has an area of 1165 440 ha. Regional analysis was performed by forming the stations initially as homogeneous group(s) according to the discordancy criteria considering by l-moment ratios. There was no discordant station according to discordancy measure of site characteristics except for the first reference period. The heterogeneity measures showed that the selected groups were homogeneous. Based on the goodness of fit criteria |ZDIST| the candidate regional distributions having the minimum ZDIST for k-reference periods were the Generalized Pareto (GPA), Generalized Extreme Values (GEV), Generalized Logistic (GLO), Pearson Type III (PE3), GEV and 3-parameter Log Normal (LN3), respectively. The drought categories for each region were predicted by applying the decision tree rules obtained from the training phase of the k-reference periods. The results revealed that there was no significant difference between drought categories calculated from the conventional SPI algorithm and decision tree approaches. Moreover, the accuracy of prediction for k-reference periods was greater than 94%, except for k3 (81.2) and k5 (86.4%) reference periods.

Palabras clave : L-moments; regionalization; standard precipitation index; decision tree.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons