SciELO - Scientific Electronic Library Online

 
vol.24 número3May the NAO index be used to forecast rain in Spain?Numerical simulation of wind gusts in intense convective weather and terrain-disrupted airflow índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Atmósfera

versión impresa ISSN 0187-6236

Resumen

LABAJO, A. L.  y  LABAJO, J. L.. Analysis of temporal behavior of climate variables using artificial neural networks: an application to mean monthly maximum temperatures on the Spanish Central Plateau. Atmósfera [online]. 2011, vol.24, n.3, pp. 267-285. ISSN 0187-6236.

Se desarrolla un modelo de predicción de temperaturas máximas medias mensuales usando una Red Neuronal Artificial (RNA) del tipo perceptron multicapa. El modelo realiza predicciones del valor de temperatura media mensual del mes siguiente al último dato de la serie. El área de estudio considerada es la meseta central española (Castilla-León, Castilla La Mancha). Los datos de temperatura máxima media mensual se obtuvieron de las observaciones en las estaciones de la red sinóptica y climatológica de la Agencia Estatal de Meteorología (AEMET) de España. El conjunto de datos es dividido en dos subconjuntos, el de entrenamiento y el de prueba. El conjunto de entrenamiento se usa para el desarrollo del modelo y el de prueba para la evaluación del modelo establecido. Los parámetros de la RNA se ajustan experimentalmente. Se utilizó un algoritmo de retropropagación con tasa de entrenamiento variable para llevar a cabo un entrenamiento supervisado. Posteriormente se evaluaron las capacidades de predicción del modelo a partir del coeficiente de determinación (R2), el error cuadrático medio (MSE) y las gráficas de dispersión y secuencia entre las series simuladas y las reales. Los resultados obtenidos con el modelo (que indican un buen ajuste entre las series reales y simuladas) se comparan con los obtenidos con modelos ARIMA. Los resultados son similares, si bien el modelo RNA es capaz de ajustar los valores extremos de las series de trabajo y algunas anomalías, lo que no sucede con modelos ARIMA.

Palabras llave : Prognostic models; maximum temperature; neural networks; multilayer perceptron; backpropagation.

        · resumen en Inglés     · texto en Inglés     · pdf en Inglés