SciELO - Scientific Electronic Library Online

 
vol.39Chemical and physical characterization of substrates enriched with minerals and compostKinematic and stress analysis of three blade designs for soil aeration roller author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Terra Latinoamericana

On-line version ISSN 2395-8030Print version ISSN 0187-5779

Abstract

TINOCO-VARELA, Daniel  and  BAYUELO-JIMENEZ, Jeannette S.. Phosphorus forms and distribution in Andisol under contrasting land-use systems in central Mexico. Terra Latinoam [online]. 2021, vol.39, e881.  Epub Sep 13, 2021. ISSN 2395-8030.  https://doi.org/10.28940/terra.v39i0.881.

Conversion of forest to conventional farming systems may affect phosphorus (P) distributions and availability, particularly in P-limited soils. The objective of this study was to evaluate the effect of land use (native forest and avocado farming systems) on forms, distribution, and availability of P in soil. Soil samples (Andisol) from three sites cultivated with conventional farming and others from a contiguous native pine forest area were included. Soil Po and Pi fractions and microbial P were sequentially extracted after seven and 28-days (d) of incubation, respectively. In cultivated soil, total P was mostly represented by inorganic fractions (66 to 78%). Pi was mainly composed of easily mineralized P (Bic-Pi), moderately stable (NaOH0.1-Pi) and relatively insoluble fractions (Residual-Pi). However, Po proportion (29%) decreased under cropped soil due to depletion of soil organic matter. In contrast, in native forest soils, more than 48% of P was extracted in microbial biomass, Bic-Po, and NaOH0.1-Po fractions. The distribution of soil P fractions was associated with soil use type. Conventional farming systems stimulated P retention in Fe-Al oxides (NaOH0.1-Pi and Residual-Pi) and decreased P availability. Compared to cultivated soil, the higher organic P proportion under forest corresponded to higher organic matter (OM) and microbial P, which highlights the potential relevance of SOM and microbial P in sustaining P availability in P-limited acidic soils. Sustainability in cropped systems could be enhanced by promoting adequate management practices aimed at increasing soil organic P storage and reducing soil chemical reactions that absorb, occlude or precipitate applied inorganic P.

Keywords : Hedley fractionation; organic matter; microbial P; intensive cropping system; natural system.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )