SciELO - Scientific Electronic Library Online

 
vol.34 issue3Spatial and temporal distribution of soil organic carbon in the terrestrial ecosystems of MexicoSimple and operational modeling of organic carbon in physical fractions in soils author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Terra Latinoamericana

On-line version ISSN 2395-8030Print version ISSN 0187-5779

Abstract

MATUS, Francisco et al. Carbon saturation in the silt and clay particles in soils with contrasting mineralogy. Terra Latinoam [online]. 2016, vol.34, n.3, pp.311-319. ISSN 2395-8030.

The silt and clay particles play a key role as stabilizing agents of soil organic carbon (SOC). Several lines of evidence indicate a theoretical maximum or C saturation in individual particles. In the present study, we hypothesized that a C fraction displaying linear accumulation relative to the SOC is not influenced by C saturation, while a fraction displaying an asymptotic relationship is regarded as saturated (Stewart et al., 2008). The aim of the present study was to compare the amount of C in the silt and clay sized fractions in temperate and subtropical cropping soils across a range of textures with different mineralogy. Twenty-one and 18 soil samples containing 1:1 and 2:1 clay of temperate soil from Chile under monoculture of maize (Zea maiz L.) for at least 30 years and 9 subtropical soils from Mexico under maize and bean (Phaseolus vulgaris L.) cropping for 9 years having mixed clay were collected at 0-0.1 m. The SOC of 2:1 soils was significantly higher (14±0.5 g kg-1 dry soil) than 1:1 soils (10±0.7 g kg-1). However, subtropical soils showed the highest values (59±0.5 g kg-1). A positive (P < 0.01) relationship was observed between the SOC and the C in the silt fraction (R2 0.80-0.97, P < 0.01). In contrast, the clay fraction remained constant or showed asymptotic behavior. We conclude that the silt fraction, unlike clay, showed no evidence of C saturation, while clay accumulates C to a maximum. On average, the 2:1 clay was saturated at 1-2 g C kg-1 and 1:1 at 1 g C kg-1, and subtropical soils at 14 g C kg-1.

Keywords : particle-size fractionation; ultrasonic dispersion; soil organic matter.

        · abstract in Spanish     · text in English     · English ( pdf )