SciELO - Scientific Electronic Library Online

 
vol.33 número3Jóvenes mexicanos y depresión: el rol de confidentesLa variabilidad del genoma del mexicano: Implicaciones y perspectivas para la investigación en psiquiatría genética en México índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Salud mental

versão impressa ISSN 0185-3325

Resumo

LEFF GELMAN, Philippe et al. Endomorphin peptides: pharmacological and functional implications of these opioid peptides in the brain of mammals. Part two. Salud Ment [online]. 2010, vol.33, n.3, pp.257-272. ISSN 0185-3325.

Endomorphin-1 (EM1) and Endomorphin-2 (EM2) represent the two endogenous C-terminal amide tetrapeptides shown to display a high binding affinity and selectivity for the µ-opioid receptor as reported previously (see previous paper, Part I). Endomorphins injected into the VTA were shown to enhance the development of behavioral sensitization responses to amphetamine (AMPH), besides of inducing an increase of locomotion (horizontal) activity in animals. These studies showed that EM2 was significantly more potent than EM1 in modulating the increased opioid-mediated ambulatory responses by altering the dopamine (DA) projecting system in the globus pallidus in tested animals. Several transmission systems (e.g., GABA) have been shown to participate in the endormorphin-induced locomotor responses. EM1 injected into the VTA produced potent rewarding effects in rodents, similar to the rewarding responses produced by distinct opiate compounds. The opioid rewarding responses induced by EM1-2 were shown to be mediated via the activation of both GABAergic and the dopamine (VTA-NAc-PFCx) transmission systems in the brain. Moreover, EM1-2 peptides injected into the VTA, but not in the NAc, produced similar related-rewarding responses induced by low doses of morphine. However, ICV administration of EM1 was shown to enhance a significant conditioned-place preference (CPP); whereas EM2 displayed a place aversion in tested animals. With regard to stress-related behaviors and physiological responses in mammals, endomorphin peptides have been proposed to modulate the HPA axis function via activation of the NTS-projecting neural system impinging on hypothalamic neurons, and/or via activation of the PAG (ventrolateral area) mediating analgesic responses-induced by stress. EM1-2 peptides have been shown to induce mood-related behaviors. For instance, administration of EM1 induced an increased anxiolytic response in mice when tested in elevated plus maze paradigms, results that showed that the µ-opioid receptor modulates mood-related responses in animals and humans, as well. Interesting enough is the recent observation that EM1-2 peptides may induce antidepressant-like behaviors in animals models of stress and depression, whereby EM1-2 peptides have been shown to up-regulate in a dose-dependent manner the neuronal expression of the BDNF mRNA in rat limbic areas involved in stress and depressive-like behaviors. Thus, these studies led to the proposition that endomorphin peptides may play crucial roles in psychiatric disorders (e.g., depression, schizophrenia). Furthermore, over the past years, it has been shown that µ-opioid receptor agonists (e.g., morphine, DAMGO; morphine-6β-glucuronide) displayed potent orexigenic activities in the CNS of mammals, similar to that displayed by EM1-2 peptides, whose dose-dependent orexigenic activity appears to be mediated by the endogenous opioid peptide, Dynorphin A, acting on its cognate κ-opioid receptor at the hypothalamus. Extensive studies revealed the activity of the EOS (e.g., β-endorphin) on the regulation of gonadal hormones and sexually-induced behaviors (e.g., lordosis) in female rats. β-endorphin or morphiceptin have been shown to facilitate lordosis behaviors in estrogen- and/or estrogen/progesterone primed rats, whereas EM1-2 peptides injected into third ventricle or into the diagonal band (DB) produced dose- and time-dependent, naloxone-reversible lordosis responses in female rats. These results posit that EM1-2 peptides produce their sexual behaviors and mating responses via modulating the cell release of LHRH and modulating GABA transmission system in the brain. Endomorphins have been shown to impair short- and long-term memory processing in mice when exposed to different learning paradigms. These opioid mediated effects appear to be regulated through the interaction of both cholinergic and dopaminergic transmissions in the brain. In addition, endomorphins have been shown to modulate cardiovascular and respiratory bioactivities, acting on several rostrocaudal areas of the CNS of mammals. Administration of EM1-2 peptides induced a significant reduction of heart rate and blood pressure in normotensive and hypertensive rats, via regulation of GABA and glutamate transmission systems. Although the exact endogenous mechanisms by which EM1-2 peptides produce their vasoactive responses are still unclear, several studies suggested that the peptide activity depends on the synthesis and release of nitric oxide (NO) from endothelial cells enhanced by activation of µ-opioid receptors. Studies on respiratory function showed that EM1-2 peptides attenuate and produce significant respiratory depression in tested animals. Finally, EM1-2 peptides have been shown to induce important inhibitory gastrointestinal effects via the activation of µ-opioid receptors localized in myenteric-plexus neurons that innervate smooth-muscle cells producing a dose-dependent- and CTOP-reversible inhibition of electrically-induced twitch ileum contractions, probably mediated through a reduced release response of several peptide and non-peptide transmitters.

Palavras-chave : Endomorphins; physiology; locomotor sensitization responses; opioid reward; stress; HPA axis; sex; feeding; cardiovascular; respiratory; anxiolytic; social defeat.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons