SciELO - Scientific Electronic Library Online

 
vol.62 issue6Comparison of variational solutions of the Thomas-Fermi model in terms of the ionization energyFrequency response of the nonclassicality and its correspondence to the classical dynamics author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física

Print version ISSN 0035-001X

Abstract

ORDONEZ, J.E.; GOMEZ, M.E.  and  LOPERA, W.. Influence of ferroelectric layer on artificial multiferroic LSMO/BTO bilayers deposited by DC and RF sputtering. Rev. mex. fis. [online]. 2016, vol.62, n.6, pp.543-547. ISSN 0035-001X.

La 2/3 Sr 1/3 MnO 3 (LSMO)/BaTiO 3 (BTO) bilayers were deposited on (001) SrTiO 3 substrates via DC and RF sputtering at pure oxygen atmosphere at a substrate temperature of 830 ∘ C. We studied the structural, electrical and magnetic properties on LSMO/BTO bilayers, when LSMO thickness is fixed at 40 nm and BTO thickness is varied from 20 to 100 nm. Reciprocal Space Maps in LSMO show a strained growth for all samples, while BTO layers are always relaxed. Magnetization and electrical measurements indicate the influence of the ferroelectric layer, due to saturation magnetization increases from 500 to 590 emu/cm 3 and coercive field decreases from 178 to 82 Oe with BTO thickness. Mean Field mechanism is identified on all samples with critical exponent 𝛽 between 0.42 and 0.54. Resistivity measurements show electron-electron and magnon- magnon scattering conduction mechanisms. The influence on magnetic and electrical properties of bilayers with BTO thickness is attributed to crystallographic strains at the interface and the corresponding relaxation with increasing BTO layer thickness.

Keywords : Ferroelectric films; magnetic multilayers; magnetic properties.

        · text in English     · English ( pdf )