SciELO - Scientific Electronic Library Online

vol.57 suppl.1TLD determination of neutron dose contribution in medical linacDesign and construction of an extended range bonner spectrometer índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de física

versión impresa ISSN 0035-001X


ORTIZ-RODRIGUEZ, J.M. et al. Performance of artificial neural networks and genetical evolved artificial neural networks unfolding techniques. Rev. mex. fis. [online]. 2011, vol.57, suppl.1, pp.89-92. ISSN 0035-001X.

With the Bonner spheres spectrometer neutron spectrum is obtained through an unfolding procedure. Monte Carlo methods, Regularization, Parametrization, Least-squares, and Maximum Entropy are some of the techniques utilized for unfolding. In the last decade methods based on Artificial Intelligence Technology have been used. Approaches based on Genetic Algorithms and Artificial Neural Networks have been developed in order to overcome the drawbacks of previous techniques. Nevertheless the advantages of Artificial Neural Networks still it has some drawbacks mainly in the design process of the network, vg the optimum selection of the architectural and learning ANN parameters. In recent years the use of hybrid technologies, combining Artificial Neural Networks and Genetic Algorithms, has been utilized to. In this work, several ANN topologies were trained and tested using Artificial Neural Networks and Genetically Evolved Artificial Neural Networks in the aim to unfold neutron spectra using the count rates of a Bonner sphere spectrometer. Here, a comparative study of both procedures has been carried out.

Palabras clave : Neutron spectrometry; neural networks; evolutive algorithms.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons