SciELO - Scientific Electronic Library Online

vol.57 issue1Coupled spinors orthonormalization criterion in multiband systemsRelativistic charged particle in a uniform electromagnetic field author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Revista mexicana de física

Print version ISSN 0035-001X


AQUINO, N.; GARZA, J.; CAMPOY, G.  and  VELA, A. Energy eigenvalues for free and confined triple-well potentials. Rev. mex. fis. [online]. 2011, vol.57, n.1, pp.46-52. ISSN 0035-001X.

Some confined and unconfined (free) one-dimensional triple-well potentials are analyzed with two different numerical approaches. Confinement is achieved by enclosing the potential between two impenetrable walls. The unconfined (free) system is recovered as the positions of the walls move to infinity. The numerical solutions of the Schrodinger equation for the symmetric and asymmetric potentials without confinement, are comparable in precision with those obtained anaylitically. For the symmetric triple-well potentials, V (x) = αx2 - βx4 + x6, it is found that there are sets of two or three quasi-degenerate eigenvalues depending on the parameters a and ¡3. A heuristic analysis shows that if the conditions α= (β2 /4) ± 1 (with α > 0 and β > 0) are satisfied, then there are sets of three eigenvalues with similar energy. An interesting behavior is found when one impenetrable wall is fixed and the other is moved to different positions. In summary, the number of local minima that the potential has in the confined region determines a two- or three-fold degeneracy.

Keywords : One-dimensional triple-well potentials; energy eigenvalues and eigenfunctions; confined quantum systems.

        · abstract in Spanish     · text in English     · English ( pdf )


Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License