SciELO - Scientific Electronic Library Online

vol.53 suppl.2Introducción a la relatividad numéricaFrom conformal Killing vector fields to boost-rotational symmetry índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de física

versión impresa ISSN 0035-001X


CHRYSSOMALAKOS, C. Physics, combinatorics and Hopf algebras. Rev. mex. fis. [online]. 2007, vol.53, suppl.2, pp.31-40. ISSN 0035-001X.

A number of problems in theoretical physics share a common nucleus of a combinatoric nature. It is argued here that Hopf algebraic concepts and techiques can be particularly efficient in dealing with such problems. As a first example, a brief review is given of the recent work of Connes, Kreimer and collaborators on the algebraic structure of the process of renormalization in quantum field theory. Then the concept of k-primitive elements is introduced - these are particular linear combinations of products of Feynman diagrams - and it is shown, in the context of a toy-model, that they significantly reduce the computational cost of renormalization. As a second example, Sorkin's proposal for a family of generalizations of quantum mechanics, indexed by an integer k > 2, is reviewed (classical mechanics corresponds to k = 1, while quantum mechanics to k = 2). It is then shown that the quantum measures of order k proposed by Sorkin can also be described as k-primitive elements of the Hopf algebra of functions on an appropriate infinite dimensional abelian group.

Palabras llave : Hopf algebras; renormalization; primitive elements; generalized quantum mechanics; quantum measures.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons