SciELO - Scientific Electronic Library Online

vol.57 número4Evaluation of the leakage origin in Abu Baara earthen dam using electrical resistivity tomography, northwestern SyriaAtmospheric corrections of the cosmic ray fluxes detected by the Solar Neutron Telescope at the Summit of the Sierra Negra Volcano in Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Geofísica internacional

versión impresa ISSN 0016-7169


VEGA-JORQUERA, Pedro; LAZZUS, Juan A.  y  ROJAS, Pedro. GA-optimized neural network for forecasting the geomagnetic storm index. Geofís. Intl [online]. 2018, vol.57, n.4, pp.239-251. ISSN 0016-7169.

A method that combines an artificial neural network and a genetic algorithm (ANN+GA) was developed in order to forecast the disturbance storm time (Dst) index. This technique involves optimizing the ANN by GA to update the ANN weights and to forecast the short-term Dst index from 1 to 6 hours in advance by using the time series values of the Dst and auroral electrojet (AE) indices. The database used contains 233,760 hourly geomagnetic indices data from 00 UT on 01 January 1990 to 23 UT on 31 August 2016. Different topologies of ANN were analyzed and the optimum architecture was selected. It emerged that the proposed ANN+GA method can be properly trained for forecasting Dst (t+1 to t+6) with good accuracy (with root mean square errors RMSE≤10nT and correlation coefficients R≥0.9), and that the utilized geomagnetic indices significantly affect the good training and predicting capabilities of the chosen network. The results show a good agreement between the measured and modeled Dst variations in both the main and recovery phases of a geomagnetic storm.

Palabras llave : Dst index; Forecast; Geomagnetic storm; Time series; Artificial neural network; Genetic algorithm.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )