SciELO - Scientific Electronic Library Online

vol.46 número1Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networksRapid isotopic changes in groundwater, upper Rio Guanajuato catchment, Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Geofísica internacional

versión impresa ISSN 0016-7169


SRI LAKSHMI, S.  y  TIWARI, R. K.. Are northeast and western Himalayas earthquake dynamics better "organized" than Central Himalayas: An artificial neural network approach. Geofís. Intl [online]. 2007, vol.46, n.1, pp.63-73. ISSN 0016-7169.

The Himalaya covering 20-38° N latitude and 70-98° E longitude, is one of the most seismo-tectonically active and vulnerable regions of the world. Visual inspection of the temporal earthquake frequency pattern of the Himalayas indicates the nature of the tectonic activity prevailing in this region. However, the quantification of this dynamical pattern is essential for constraining a model and characterizing the nature of earthquake dynamics in this region. We examine the temporal evolution of seismicity (M > 4) of the Central Himalaya (CH), Western Himalaya (WH) and Northeast Himalaya (NEH), for the period of 1960-2003 using artificial neural network (ANN) technique. We use a multilayer feedforward artificial neural network (ANN) model to simulate monthly resolution earthquake frequency time series for all three regions. The ANN is trained using a standard back-propagation algorithm with gradient decent optimization technique and then generalized through cross-validation. The results suggest that earthquake processes in all three regions evolved on a high dimensional chaotic plane akin to "self-organized" dynamical pattern. Earthquake processes of NEH and WH show a higher predictive correlation coefficient (50-55%) compared to the CH (30%), implying that the earthquake dynamics in the NEH and WH are better "organized" than in the CH region. The available tectonogeological observations support the model predictions.

Palabras llave : Himalaya; neural networks; self-organisation; seismicity.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )


Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons