SciELO - Scientific Electronic Library Online

 
vol.46 número1Geodynamics of the Wadati-Benioff zone earthquakes: The 2004 Sumatra earthquake and other great earthquakesAre northeast and western Himalayas earthquake dynamics better "organized" than Central Himalayas: An artificial neural network approach índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Geofísica internacional

versión impresa ISSN 0016-7169

Resumen

GARCIA, Silvia R.; ROMO, Miguel P.  y  MAYORAL, Juan M.. Estimation of peak ground accelerations for Mexican subduction zone earthquakes using neural networks. Geofís. Intl [online]. 2007, vol.46, n.1, pp.51-62. ISSN 0016-7169.

An extensive analysis of the strong ground motion Mexican data base was conducted using Soft Computing (SC) techniques. A Neural Network NN is used to estimate both orthogonal components of the horizontal (PGAh) and vertical (PGAv) peak ground accelerations measured at rock sites during Mexican subduction zone earthquakes. The work discusses the development, training, and testing of this neural model. Attenuation phenomenon was characterized in terms of magnitude, epicentral distance and focal depth. Neural approximators were used instead of traditional regression techniques due to their flexibility to deal with uncertainty and noise. NN predictions follow closely measured responses exhibiting forecasting capabilities better than those of most established attenuation relations for the Mexican subduction zone. Assessment of the NN, was also applied to subduction zones in Japan and North America. For the database used in this paper the NN and the-better-fitted- regression approach residuals are compared.

Palabras llave : Neuronal network; subduction; PGA's; attenuation.

        · resumen en Español     · texto en Inglés     · Inglés ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons