SciELO - Scientific Electronic Library Online

 
 número42Swarm Filtering Procedure and Application to MRI MammographyExpected Utility from Multinomial Second-order Probability Distributions índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Polibits

versión On-line ISSN 1870-9044

Polibits  no.42 México jul./dic. 2010

 

Mixing Theory of Retroviruses and Genetic Algorithm to Build a New Nature–Inspired Meta–Heuristic for Real–Parameter Function Optimization Problems

 

Renato Simões Moreira1, Otávio Noura Teixeira2, and Roberto Célio Limão de Oliveira1

 

1 PPGEE–ITEC, Universidade Federal do Pará (UFPA), Belém, PA, Brasil. (renatosm@gmail.com; limao@ufpa.br).

2 Laboratório de Computação Natural (LCN), Centro Universitário do Pará (CESUPA), Belém, PA, Brasil; Movimento Evolucionário e Cooperativo para a Construção do Artificial (MEC2A), Belém, PA, Brasil; PPGEE–ITEC, Universidade Federal do Pará (UFPa), Belém, PA, Brasil. (onoura@gmail.com).

 

Manuscript received May 7, 2010.
Manuscript accepted for publication August 29, 2010.

 

Abstract

This paper describes the development of a new hybrid meta–heuristic of optimization based on a viral lifecycle, specifically the retroviruses (the nature's swiftest evolvers), called Retroviral Iterative Genetic Algorithm (RIGA). This algorithm uses Genetics Algorithms (GA) structures with features of retroviral replication, providing a great genetic diversity, confirmed by better results achieved by RIGA comparing with GA applied to some Real–Valued Benchmarking Functions.

Key words: Evolutionary computation, genetic algorithm, viruses, retroviruses, hybrid metaheuristic.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

REFERENCES

[1] J. Carter and V. Saunders, Virology Principles and Applications. John Wiley & Sons ltd., England, 2007.         [ Links ]

[2] R. L. Haupt and S. E. Haupt, Practical Genetic Algorithms. John Wiley & Sons ltd., England, 1998.         [ Links ]

[3] S. Hogg, Essential Microbiology. John Wiley & Sons ltd., England, 2005.         [ Links ]

[4] A. Agut, "Um Sistema Estratégico De Reprodução," Scientific American Brasil, Edição Especial, N. 28, p. 14–19, São Paulo, 2009

        [ Links ]

[5] R. Linden. Algoritmos Genéticos 1. Ed. Rio De Janeiro: Brasport 2006.         [ Links ]

[6] A. Guedes, J. Leite, D. Aloise, "Um Algoritmo Genético Com Infecção Viral Para O Problema Do Caixeiro Viajante," Revista PublICa,Ano IV, vol 4, 2005.         [ Links ]

[7] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, "Problem Definitions and Evaluation Criteria For The Cec 2005 Special Session On Real–Parameter Optimization," Technical Report, Nanyang Technological University, Singapore and Kangal Report Number 2005005 (Kanpur Genetic Algorithms Laboratory, lit Kanpur), 2005.         [ Links ]

[8] M. Mitchell, An Introduction to Genetic Algorithms. MIT Press, 1999.         [ Links ]

[9] L. Villarreal, "Virus São Seres Vivos?" Scientific American Brasil, Edição Especial, n. 28, p. 21–24. São Paulo, 2009.         [ Links ]

[10] N. Kubota and T. Fukuda and K. Shimojima, "Virus–evolutionary genetic algorithm for a self–organizing manufacturing system," Computers & Industrial Engineering, vol 30, pp. 1015–1026, 1996.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons