SciELO - Scientific Electronic Library Online

vol.10 número3Advanced Engineering Platform for Industrial Development índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.3 México dic. 2012


A Quantitative Analysis of Student Learning Styles and Teacher Teachings Strategies in a Mexican Higher Education Institution


A.L. Franzoni-Velazquez*1, F. Cervantes-Pérez2, S. Assar3


1 Department of Computer Science, Instituto Tecnológico Autónomo de México, Río Hondo #1, Progreso Tizapán, 01080, Mexico City, Mexico *E-mail:

2 Centro de Ciencias Aplicadas y Desarrollo Tecnológico (CCADET) Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, 04510 Mexico City, Mexico.

3 Institut TELECOM, Telecom Business School Département Systémes d'lnformation, 9, rue Charles Fourier, 91011 Evry, France.



Research on learning processes has shown that students tend to learn in different ways and prefer to use different teaching resources. The understanding of learning styles can be used to identify, and implement, better teaching and learning strategies, in order to allow students to acquire new knowledge in a more effective and efficient way. In this study we analyze similarities and differences in learning styles among students enrolled in computing courses, in engineering and social sciences programs at the Instituto Tecnológico Autónomo de México (ITAM). In addition, we also analyze similarities and differences among the teaching strategies shown by their corresponding teachers. A comparative analysis on student learning profiles and course outcomes, allow us to suggest that, despite academic program differences, there are strong similarities among the students learning styles, as well as among the teaching styles of their professors. Seemingly, a consistent pattern of how these students learn also exists: Active, Sensitive, Visual and Sequential. At the end of the paper, we discuss how these findings might have significant implications in developing effective pedagogic strategies, as well as didactic multimedia based materials for each one of these academic programs.

Keywords: Computing engineering, learning styles, teaching strategies and didactic strategies.



Investigaciones sobre procesos de aprendizaje han mostrado que los estudiantes tienden a aprender en diferentes maneras y que prefieren utilizar diferentes recursos de enseñanza. El entender los estilos de aprendizaje puede servir para identificar, e implantar, mejores estrategias de enseñanza y aprendizaje, de tal forma que los estudiantes adquieran nuevo conocimiento de manera más efectiva y eficiente. Aquí, se analizan similitudes y diferencias entre estilos de aprendizaje de estudiantes inscritos en cursos de cómputo, en programas de Ingeniería y Ciencias Sociales del Instituto Tecnológico Autónomo de México (ITAM). Adicionalmente, se analizan similitudes y diferencias en estrategias de enseñanza de sus correspondientes profesores. Un análisis comparativo sobre perfiles de aprendizaje de los estudiantes y los resultados obtenidos en los cursos, sugiere que existen grandes similitudes entre los estilos de aprendizaje de los estudiantes, y las estrategias de enseñanza de sus profesores, a pesar de las diferencias entre sus programas académicos. También existe un patrón consistente de cómo estos estudiantes aprenden: Activo, Sensible, Visual, y Secuencial. En la última parte de este artículo se discute como estos hallazgos podrían tener una implicación significativa en el desarrollo de estrategias pedagógicas efectivas, y de materiales didácticos multimedia específicos, para cada programa educativo.





[1] Reigeluth C., A new paradigm of ISD? Educational Technology & Society, Vol. 36, No. 3, 1996, pp. 13-20        [ Links ]

[2] Honey P. & Mumford, A., Using your Learning Styles: Peter Honey, Maidenhead, 1986        [ Links ]

[3] Rasmussen K., Hypermedia and learning styles: Can performance be influenced? Journal of Multimedia and Hypermedia, Vol. 7, No. 4, 1998        [ Links ]

[4] Felder R. & Soloman B., Learning Styles and Strategies, North Carolina State University [online], 1993, Available: [retrieved 28 may 2007]         [ Links ]

[5] Coffield F., Moseley D., Hall E. & Ecclestone K., Learning styles and pedagogy in post-16 learning: A systematic and critical review, Learning and Skills Research Center Report [online], 2004, Available: [retrieved 5 June 2007]         [ Links ]

[6] Oxford R., Ehrman M. & Lavine R., Style wars: Teacher-student style conflicts in the language classroom, In S. Magnan, (Ed.), 1991, Challenges in the 1990's for College Foreign Language Programs. Boston: Heinle and Heinle        [ Links ]

[7] Griggs S. & Dunn. R., Selected case studies of the learning style preferences of gifted students, Gifted Child Quarterly, Vol. 28, No. 3, 1984, pp. 115-119        [ Links ]

[8] Smith L. & Renzulli J., Learning style preference: A practical approach for classroom teachers, Theory into Practice, Vol. 23, No.1, 1984, pp.45-50        [ Links ]

[9] Charkins R., O'Toole D. & Wetzel J., Linking teacher and student learning styles with student achievement and attitudes, Economic Education, Spring, 1985, pp. 111-120        [ Links ]

[10] Felder R. & Silverman L., Learning and Teaching Styles in Engineering Education, Engr. Education, 1988, pp. 674-681        [ Links ]

[11] Sewall T., The Measurement of Learning Style: A Critique of Four Assessment Tools. ERIC ED267247, 1986        [ Links ]

[12] Kolb D., Experimental Learning: Experience as the Source of Learning and Development, Englewood Cliffs, NJ: Prentice-Hall, 1984        [ Links ]

[13] Carver C., Howard R. & Lane W., Enhancing student learning through hypermedia courseware and incorporation of student learning styles, IEEE, 1999, pp. 33-38        [ Links ]

[14] Hong H. & Kinshuk, Adaptation to Student Learning Styles in Web Based Educational Systems, In Proceedings of World conference on Educational Multimedia, Hypermedia & Telecommunications ED-MEDIA, 2004, pp. 21-26, Lugano, Switzerland        [ Links ]

[15] Paredes P. & Rodriguez P., Considering sensing intuitive dimension to exposition-exemplification in adaptive sequencing, In Proceedings of the AH2002 Conference, 2002, pp.556-559, Malaga, Spain        [ Links ]

[16] Zywno M., A Contribution to Validation of Score Meaning for Felder-Soloman's Index of Learning Styles, ASEE Conference, 2003, Nashville, Tennessee        [ Links ]

[17] Felder R. & Spurlin J., Applications, Reliability and Validity of the Index of Learning Styles, International Journal of Engineering Education, 2005, Vol. 21, No. 1, pp. 103-112        [ Links ]

[18] Klobas J., Teaching with a Scalable, Multidisciplinary Learning Object: A Business School Case Study, Journal of Information Systems Education, Vol. 16, No. 3, 2005, pp. 329-340        [ Links ]

[19] Rose C., Accelerated Learning, Bantam Dell Publishing Group, New York, 1998        [ Links ]

[20] Dunn R., Gender difference in EEG. Patterns: are they indexes of different cognitives styles, Anna Arbor. Michigan: Eric ED 300416, 1988        [ Links ]

[21] Cabero, J. Bases Pedagógicas del E-learning, Revista de Universidad y Sociedad del Conocimiento, 2006.         [ Links ]

[22] [retrieved 3 December 08]         [ Links ]

[23] Allert J., Learning style and factors contributing to success in an introductory computer science course, Conference Proceedings 4th IEEE, Advanced Learning Technologies (ICALT), 2004, pp. 385-389, Joensuu, Finland        [ Links ]

[24] Chamillard A. & Karalick D., Using learning style data in an introductory computer science course, Conference Proceedings 30th ACM, Computer Science Education (SIGCSE), 1999, pp. 291-295, New Orleans        [ Links ]

[25] Thomas L., Ratcliffe M., Woodbury J., & Jarman E., Learning styles and performance in the introductory programming sequence, Conference Proceedings 33rd ACM, Computer Science Education (SIGCSE), 2002, pp. 33-37, Covington, KY        [ Links ]

[26] Bevington P. & Robinson D., Data reduction and error analysis for the physical sciences, Mc Graw Hill, Boston, 2003, pp.320        [ Links ]

[27] Barnett V. & Lewis T., Outliers in statistical data, John Wiley & Sons, Chichester, 1994, pp. 584        [ Links ]

[28] Verma, S., Estadística básica para el manejo de datos experimentales: aplicación en la Geoquímica (Geoquimiometría), UNAM, México, D.F., 2005, pp.186        [ Links ]

[29] Verma S. & Quiroz-Ruiz A., Critical values for six Dixon tests for outliers in normal samples up to sizes 100, and applications in science and engineering, Revista Mexicana de Ciencias Geológicas, Vol. 23, 2006a, pp. 133-161        [ Links ]

[30] Verma S. & Quiroz-Ruiz A., Critical values for 22 discordancy test variants for outliers in normal samples up to sizes 100, and applications in science and engineering, Revista Mexicana de Ciencias Geológicas, Vol. 23, 2006b, pp. 302-319        [ Links ]

[31] Verma S. & Quiroz-Ruiz A., Critical values for 33 discordancy test variants for outliers in normal samples for very large sizes of 1,000 to 30,000 and evaluation of different regression models for the interpolation and extrapolation of critical values, Revista Mexicana de Ciencias Geológicas, Vol. 25, 2008, pp. 369-381        [ Links ]

[32] Verma S., Díaz-González L., Sánchez-Upton P., & Santoyo E., OYNYL: a new computer program for ordinary, York, and New York least-squares linear regressions, WSEAS Transactions on Environment and Development, Vol. 2, No. 8, 2006, pp.997-1002.         [ Links ]

[33] Howell D., Statistical Methods for Psychology (4th edition), London: Duxbury Press, 1997, Chapters 11-14        [ Links ]

[34] Verma S., Evaluation of polynomial regression models for the Student t and Fisher F critical values, the best interpolation equations from double and triple natural logarithm transformation of degrees of freedom up to 1000, and their applications to quality control in science and engineering, Revista Mexicana de Ciencias Geológicas, Vol. 26, No.1, 2009, pp.79-92        [ Links ]

[35] Asmus J., Bonner C., Esterhay D., Lechner A. & Rentfrow C., Instructional design technology trend analysis [online], [retrieved January 5 2008]         [ Links ]

[36] Alfonseca E., Carro R., Martin E., Ortigosa A. & Paredes P., The impact of learning styles on student grouping for collaborative learning: a case study, user model user, adapt inter, 2006, Vol. 16, pp. 377-401        [ Links ]

[37] Saeed N. & Yang Y., Using learning styles and preferences to incorporate emerging e-learning tools in teaching, Proceedings of the 8th IEEE International Conference on Advanced Learning Technologies (ICALT'08), 2008, pp. 967-971 Santander, Cantabria, Spain, July        [ Links ]

[38] Zualkernan I., Allert J. & Ghassan S., Learning styles of computer programming students: a Middle Eastern and American comparison, Journal IEEE transactions on Education, Vol. 19, No. 4, 2006, pp. 443-450, November        [ Links ]

[39] Franzoni A., Assar S., Defude B. & Rojas J., Student Learning Styles Adaptation Method Based on Teaching Strategies and Electronic Media, Proceedings of the 8th IEEE International Conference on Advanced Learning Technologies (ICALT'08), 2008, Santander, Cantabria, Spain, July        [ Links ]

[40] Franzoni A. & Assar A., Student Learning Styles Adaptation Method Based on Teaching Strategies and Electronic Media, Journal of International Forum of Educational Technology & Society, 2009, ISSN 1436-4522, October        [ Links ]

[41] Smith P. & Dalton J., Accommodating learning styles: Relevance and good practice in vocational education and training, NCVER, 2005, Australia.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons