Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Agrociencia
versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195
Agrociencia vol.41 no.4 Texcoco may./jun. 2007
Fitociencia
Efecto de la deficiencia de fósforo en el metabolismo de carbono de plántulas de frijol (Phaseolus vulgaris)
1Departamento de Bioquímica, Facultad de Química. Universidad Nacional Autónoma de México. 04510. México, D. F. (emtz@servidor.unam.mx).
2INIFAP. Campo Experimental Bajío. 38000. Apartado Postal 112. Celaya, Guanajuato, México.
El fósforo (P) es un nutriente esencial para las plantas. Hay genotipos de frijol (Phaseolus vulgaris) que son menos afectados, pero la falta de una caracterización adecuada de sus respuestas bioquímicas a la carencia de P ha limitado su uso en programas de mejoramiento. En este artículo se reportan diferencias notables entre los genotipos Canario 60 (C60) y MAR1 a la falta de P: el peso seco de la raíz se redujo en proporciones similares, pero el impacto sobre la parte aérea fue mayor en C60. La falta de P no alteró la relación entre P soluble y total en hojas jóvenes y hojas maduras, pero la incrementó en la raíz de MAR1. La carencia de P modificó los niveles de glucosa, fructosa, sacarosa y almidón en hojas y raíces. Se propone que el uso eficiente el P, su movilización de la raíz a las hojas, y el mantenimiento de la capacidad para exportar fotosintatos, son cualidades de la planta que pueden mejorar el desempeño del cultivo cuando la cantidad de P asimilable no es suficiente.
Palabras clave: Phaseolus vulgaris; fosfato; nutrición
Phosphorus (P) is an essential nutrient for plants. There are genotypes of bean (Phaseolus vulgaris) that are less affected, but the lack of an adequate characterization of their biochemical responses to the lack of P has limited their use in breeding programs. In this article notable differences are reported among the genotypes Canario 60 (C60) and MAR1 to the lack of P: the dry weight of the root was reduced in similar proportions, but the impact on the aboveground part was greater in C60. The lack of P did not alter the relationship between soluble and total P in young leaves and mature leaves, but increased it in the root of MAR1. The lack of P modified the levels of glucose, fructose, saccharose and starch in leaves and roots. It is proposed that the efficient use of P, its mobilization from the root to the leaves, and the maintenance of the capacity to export photosynthates, are qualities of the plant that can improve the performance of the crop when the amount of assimilable P is not sufficient.
Key words: Phaseolus vulgaris; phosphate; nutrition
AGRADECIMIENTOS
Se agradece el apoyo de Carmen Parra y de Laurel Fabila, así como el financiamiento otorgado por DGAPA (IN201502) y Facultad de Química, UNAM (PAIP 6290-13 y 6290-14).
LITERATURA CITADA
Ames, B. N. 1966. Assay of inorganic phosphate, total phosphate and phosphatase. Meth. Enzymol. 8: 115-118. [ Links ]
Asmar, F., T. Agonía, and N. Nielsen. 1995. Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil. Plant Soil 172: 117-122. [ Links ]
Beebe, S., J. P. Lynch, N. W. Galaway, J. Tohme, and I. Ochoa. 1997. A geographical approach to identify phosphorus-efficient genotypes among landraces and wild ancestors of common bean. Euphytica 95: 325-336. [ Links ]
Bernal, L., P. Coello, and E. Martínez-Barajas. 2005. Possible role played by R1 protein on starch accumulation in bean seedlings (Phaseolus vulgaris) under phosphate deficiency. J. Plant Physiol. 162: 970-976. [ Links ]
Chiera, J., J. Thomas, and T. Rufty. 2002. Leaf initiation and development in soybean under phosphorus stress. J. Exp. Bot. 53: 473-481. [ Links ]
CIAT (International Center for Tropical Agriculture). 1987. CIAT Annual Report 1987. Cali, Colombia. pp: 48-52. [ Links ]
Cierezko, I., and A. Barbachowska. 2000. Sucrose metabolism in leaves and roots of beans (Phaseolus vulgaris L) during phosphate deficiency. J. Plant Physiol. 156: 640-644. [ Links ]
Cierezko, I., A. Zambrzycka, and A.M. Rychter. 1998. Sucrose hydrolysis in bean roots (Phaseolus vulgaris L.) under phosphate deficiency. Plant Sci. 133: 139-144. [ Links ]
Coello, P. 2002. Purification and characterization of secreted acid phosphatases in phosphorus-deficient Arabidopsis thaliana. Physiol Plant. 116: 293-298. [ Links ]
Dietz, K., and L. Helios. 1990. Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur metabolism. Plant Physiol. 93: 1219-1225. [ Links ]
Fredeen, A.L., T. K. Raab, M. Rao, and N. Terry. 1990. Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta 181: 399-405. [ Links ]
Holford, I. C. R. 1997. Soil phosphorus: its measurement and its uptake by plants. Aust. J. Soil. Res. 35: 227-239. [ Links ]
Jeschke, W., E. Kirby, A. Peuke, J. Pate, and W. Hartung. 1997. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.). J. Exp. Bot. 48: 75-91. [ Links ]
Kondracka, A., and A.M. Rychter. 1997. The role of Pi recycling processes during photosynthesis in phosphate-deficient bean plants. J. Exp. Bot. 48: 1461-1468. [ Links ]
Liu, C., U. S. Muchhal, M. Uthappa, A. K. Konowicz, and K.G. Ragothama. 1998. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116: 91-99. [ Links ]
López-Bucio, J., and L. Herrera-Estrella. 2000. Organic acid metabolism in plants: from adaptative physiology to transgenic varieties for cultivation in extreme soils. Plant Sci. 160: 1-13. [ Links ]
Lynch, J. P., and K. M. Brown. 2001. Topsoil foraging: an architectural adaptation of plants to low phosphorus availability. Plant and Soil 237: 225-237. [ Links ]
Lynch, J. P., A. Lauchli, and E. Epstein. 1991. Vegetative growth of tile common bean in response to phosphorus nutrition. Crop Sci. 30: 1165-1171. [ Links ]
Marschner, H. 1995. Mineral Nutrition of Higher Plants. Academic Press. San Diego, CA. 889 p. [ Links ]
Nielsen, K.L., A. Eshel, and J.P. Lynch. 2001. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J. Exp. Bot. 52: 329-339. [ Links ]
Parra, C., E. Martínez-Barajas, J. Acosta, y P. Coello. 2004. Respuesta a la deficiencia de fosfato de genotipos de frijol contrastantes en su capacidad de crecer en suelos con bajo contenido de fósforo. Agrociencia 38: 131-139. [ Links ]
Pieters, A. J., M. J. Paul, and D. W. Lawlor. 2001. Low sink demand limits photoshynthesis under Pi deficiency. J. Exp. Bot. 52: 1083-1091. [ Links ]
Plaxton, W. C. 1996. The organization and regulation of plant glycolysis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47: 185-214. [ Links ]
Rao, I. M., A. L. Freeden, and N. Terry. 1993. Influence of phosphorus limitation on photosynthesis, carbon allocation and partitioning in sugar beet and soybean grown with a short photoperiod. Plant Physiol. Biochem. 31: 223-231. [ Links ]
Rychter, A. M., and D. D. Randall. 1994. The effect of phosphate deficiency on carbohydrate metabolism in bean roots. Physiol. Plant. 79: 663-667. [ Links ]
Theodorou, M. E., I. R. Elrifi, D. H. Turpin, and W. C. Plaxton. 1991. Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiol. 95: 1089-1095. [ Links ]
Recibido: Abril de 2006; Aprobado: Febrero de 2007