SciELO - Scientific Electronic Library Online

 
vol.59 número5Three-dimensional PIV measurements of bubble drag and lift coefficients in restricted mediaQuartic couplings, masses and thresholds in the basic extension of the Standard Model índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.5 México sep./oct. 2013

 

Investigación

 

The band gap problem: the accuracy of the Wien2k code confronted

 

J. A. Camargo-Martínez and R. Baquero

 

Departamento de Física, CINVESTAV-IPN, Av. IPN 2508, 07360 México.

 

Received 1 February 2013
Accepted 26 April 2013

 

Abstract

This paper is a continuation of our detailed study [Phys. Rev. B 86, 195106 (2012)] of the performance of the recently proposed modified Becke-Johnson potential (mBJLDA) within the known Wien2k code. From the 41 semiconductors that we have considered in our previous paper to compute the band gap value, we selected 27 for which we found low temperature experimental data in order to pinpoint the relative situation of the newly proposed Wien2k(mBJLDA) method as compared to other methods in the literature. We found that the GWA gives the most accurate predictions. The Wien2k (mBJLDA) code is slightly less precise, in general. The Hybrid functionals are less accurate, on the overall. The GWA is definitely the most precise existing method nowadays. In 88% of the semiconductors considered the error was less than 10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27 semiconductors considered with a 5% error or less. An extra factor to be taken into account is the computational cost. If one would seek for precision without taking this factor into account, the GWA is the method to use. If one would prefer to sacrifice a little the precision obtained against the savings in computational cost, the empirical mBJLDA potential seems to be the appropriate method. We include a graph that compares directly the performance of the best three methods, according to our analysis, for each of the 27 semiconductors studied. The situation is encouraging but the problem is not yet a closed issue.

Keywords: Band gap problem; Wien2k; mBJLDA potential; hybrid functionals; GW approximation.

 

PACS: 71.15.Mb; 71 .20.Mq; 71. 20.Nr

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. W. Khon and L. J. Sham, Phys. Rev. 140 (1965) A1133.         [ Links ]

2. J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1992) 13244.         [ Links ]

3. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82 (1999)2544.         [ Links ]

4. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865.         [ Links ]

5. J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. E 78 (1997) 1396.         [ Links ]

6. J. Tao, J. P. Perdew, V.N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91 (2003) 146401.         [ Links ]

7. J. P. Perdew, Int. J. Quantum Chem. 30 (1986) 451.         [ Links ]

8. G. A. Baraff and M. Schluter, Phys. Rev. B 30 (1984) 3460.         [ Links ]

9. V. i. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44(1991) 943.         [ Links ]

10. L. Hedin, Phys. Rev. 139 (1965) A796.         [ Links ]

11 . F. Aryasetiawany, and O. Gunnarssonz, Rep. Prog. Phys. 61(1998) 237.         [ Links ]

12. W. G. Aulbur, L. Jonsson, and J. W. Wilkins, Solid State Phys. 54 (2000) 1.         [ Links ]

13. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118(2003) 8207.         [ Links ]

14. J. Heyd, J. E. Peralta, G.E. Scuseria, and R. L. Martin, J. Chem. Phys. 123 (2005) 174101.         [ Links ]

15. J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124(2006) 219906.         [ Links ]

16. T. M. Henderson, A. F. izmaylov, G. E. Scuseria, and A. Savin, J. Chem. Phys. 127 (2007) 221103.         [ Links ]

17. T. M. Henderson, A. F. izmaylov, G. E. Scuseria, and A. Savin J. Theor. Comput. Chem. 4 (2008) 1254.         [ Links ]

18. F. Tran and P. Blaha, Phys. Rev. Lett. 102 (2009) 226401.         [ Links ]

19. P. Blaha, K. Schwars, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K:Full Potential-Linearized Augmented Plane waves and Local Orbital Programs for Calculating Crystal Properties, edited by K. Schwars, (Vienna University of Technology, Austria,2001).         [ Links ]

20. J. A. Camargo-Martinez, and R. Baquero, Phys. Rev. B 86 (2012) 195106.         [ Links ]

21. A. D. Becke, and M. R. Roussel, Phys. Rev. A 39 (1989) 3761.         [ Links ]

22. A. D. Becke, J. Chem. Phys. 98 (1993) 1372.         [ Links ]

23. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.         [ Links ]

24. M. Ernzerhof and J. P. Perdew, J. Chem. Phys. 109 (1998) 3313.         [ Links ]

25. M. Ernzerhof, and G. E. Scuseria, J. Chem. Phys. 110 (1999) 5029.         [ Links ]

26. C. Adamo, and V. Barone, J. Chem. Phys. 110 (1999) 6158.         [ Links ]

27. J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105(1996) 9982.         [ Links ]

28. M. A. L. Marques, J. Vidal, M. J. T. Oliveira, L. Reining, and S. Botti, Phys. Rev.B 83 (2011) 035119.         [ Links ]

29. M. J. Lucero, T. M. Henderson, and G. E. Scuseria, J. Phys.: Condens. Matter 24 (2003) 145504.         [ Links ]

30. A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems. (Courier Dover Publications, 2003).         [ Links ]

31. P. Rinke etal., New J. Phys. 7 (2005) 126.         [ Links ]

32. M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99 (2007) 246403.         [ Links ]

33. M. Shishkin, and G. Kresse, Phys. Rev. B 75 (2007) 235102.         [ Links ]

34. M.S. Hybertsen, and S. G. Louie, Phys. Rev. B 34 (1986) 5390.         [ Links ]

35. U. Schonberger, and F. Aryasetiawan, Phys. Rev. B 52 (1995) 8788.         [ Links ]

36. R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. B 37 (1988) 10159.         [ Links ]

37. X. Zhu and S. G. Louie,1 Phys. Rev. B 43 (1991) 14142.         [ Links ]

38. M. Rohlfing, P. Kruger, and J. Pollmann, Phys. Rev. Lett. 75(1995) 3489.         [ Links ]

39. O. Zakharov, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie, Phys. Rev. B 50 (1994) 10780.         [ Links ]

40. A. Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, Phys. Rev.B 48 (1993) 11810.         [ Links ]

41. S. Adachi, Handbook on Physical Properties of Semiconductors, Vols. I, II and III. (Kluwer Academic Publishers, 2004).         [ Links ]

42. O. Madelung, Data in Sciene and Technology, Semiconductors Group IV Elements and II-VCompounds. (Ed. Springer-Verlag, 1991).         [ Links ]

43. O. Madelung, Semiconductors: Data Handbook CD-ROM. (Ed. Springer-Verlag, 2003).         [ Links ]

44. D. Wolverson, D. M. Bird, C. Bradford, K. A. Prior, and B. C. Cavenett, Phys. Rev. B, 64 (2001) 113203.         [ Links ]

45. K. Watanabe etal., J. Appl. Phys. 81 (1997) 451.         [ Links ]

46. M. Feneberg, J. Daubler, K. Thonke, R. Sauer, P. Schley, and R. Goldhahn, Phys. Rev. B, 77 (2008) 245207.         [ Links ]

47. H. Morkoc, Handbook ofNitride Semiconductors and Devices, Ed. Wiley-VCH (2008).         [ Links ]

48. D. M. Roessler and W. C. Walker, J. Phys. Chem. Solids 28(1967) 1507.         [ Links ]

49. G. Ramirez-Flores, H. Navarro-Contreras, A. Lastras-Martinez, R. C. Powell and J. E. Greene, Phys. Rev. B 50 (1994) 8433.         [ Links ]

50. L. Tie-Yu, C. De-Chan and H. Mei-Chun, Chinese Phys. Lett. 23 (2005) 943.         [ Links ]

51. R. Grau-Crespo, H. Wang and U. Schwingenschlogl, Phys. Rev. B 86 (2012) 081101(R).         [ Links ]

52. Z. Zhu and U. Schwingenschlogl, Phys. Rev. B 86 (2012) 075149.         [ Links ]

53. F. Tran and P. Blaha, Phys. Rev. B 83 (2011) 235118.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons