SciELO - Scientific Electronic Library Online

 
vol.59 número4SL(2,R)-geometric phase space and (2+2)-dimensionsBismuth coatings deposited by the pulsed dc sputtering technique índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.59 no.4 México jul./ago. 2013

 

Research

 

Tribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel

 

J. C. Caicedoa,b, W. Aperadorc, and Y. Aguilara

 

a Materials school, Universidad del Valle Ciudad Universitaria, Meléndez, A. A. 25360 Cali, Colombia, Powder Metallurgy and Processing of Solid Recycling Research Group, Universidad del Valle, Cali Colombia.

b Thin films group, Universidad del Valle Calle, 13 #100-00 Edificio 320, espacio 1026, Cali, Colombia.

c Departament of Engineering, Universidad Militar Nueva Granada, Carrera 11 No. 101-80, Fax:+57(1) 6343200, Bogotá, Colombia, e-mail: jcaicedoangulo1@gmail.com.

 

Received 24 August 2012
Accepted 17 April 2013

 

Abstract

A diagnostic of mechanical and tribological behavior in ternary Ti-C-N and quaternary Ti-Nb-C-N films deposited onto Si (100) and 4140 steel substrates by r.f. magnetron sputtering processvarying negative bias voltage from 0 to -100 V,was done in this work. Growth parameters as power density, Ar/N2 flow rate, and substrate temperature were keptconstant at the moment of the deposition. Introduction of Nb in the ternary Ti-C-N film was evaluated by X-ray diffraction (XRD) analysis.Quantitative elemental concentration depth profile by glow discharge optical emission spectroscopy (GDOES) and the morphology via scanning electron microscopy (SEM) were observed for the layers before the tests. Mechanical and tribological properties for both coatings were obtained by mean of nanoindentation measurements throughload versus displacement method, and scratch test using the critical load criterion, respectively. The failure modes from scratch test were observed via optical microscopy. XRD results show as the amount of Nb is increased into the quaternary phase, the preferred orientation change in the film due to the modification in the strain and lattice parameter (Caicedo et al., 2007). EDX results from previous work show the TiCN and TiNbCN layers were stoichiometric (Caicedo et al., 2007). Nanoindentation results reaching the elastic-plastic behavior of the TiCN and TiCN films with inclusion of Nb (TiNbCN), indicate not only the hardness and elastic modulus but also the critical load for the adhesive failure increase when increasing r.f negative bias voltage. An improvement of hardness and critical load around 60% and 28% for TiCN as well as 26% and 31%for TiNbCN, respectively, was associated to an increasing in the r.f negative bias voltage from 0 to -100 V.

Keywords: Hard coatings; bias voltage; elastic modulus; mechanical and tribological properties.

 

PACS: 62.20.de; 61.05.cf; 68.30.j; 68.35.Ja; 62.20.Qp.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This research was supported by "El patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnologíay la Innovación Francisco Jose de Caldas" under contract RC-No. 275-2011 with Center of Excellence for Novel Materials (CENM). Moreover, the authors acknowledge the Serveis Científico-Técnics of Universitat de Barcelona. For the TEM results.

 

References

1. J.C. Caicedo et al., Appl. Surf. Sci. 256 (2010) 2876.         [ Links ]

2. AviRaveh, Ido Zukerman, RoniShneck, Rudi Avni, and Ilana Fried, Surf. Coat. Technol. 201 (2007) 6136.         [ Links ]

3. H. Ehrhardt, Surf. Coat. Technol. 74-75 (1995) 29.         [ Links ]

4. B.S. Kim, G.S. Kim, S.Y. Lee, and B.Y. Lee, Surf. Coat. Technol. 202 (2008) 5526.         [ Links ]

5. G. Zambrano et al., Surf. Coat. Technol. 108-109 (1998) 323.         [ Links ]

6. P.C. Yashar and W.D. Sproul, Vacuum 55 (1999) 179.         [ Links ]

7. E.H.J. Danen and A Sonnenberg, J. Pathol201 (2003) 632.         [ Links ]

8. D.V. Shtansky, Nanostructured Thin Films and Nanodisper-sion Strengthened Coatings, 1st ed. (Springer, Moscow, Russia, 2004). pp. 155-166.         [ Links ]

9. V.I. Tretyakov, and V.L. Mashevskaya, Powder Metall. Met. Ceram. 38 (1999) 64.         [ Links ]

10. F. Qi, and S. Kang, Mater. Sci. Eng. A. 251 (1998) 276.         [ Links ]

11. H. Riascos, J. Neidhardt, G.Z. Radnoczi, J. Emmerlich, G. Zambrano, L. Hultman, and P. Prieto, Thin Solid Films 497 (2006) 1.         [ Links ]

12. M. Pancielejko, and W. Precht, J. Mater. Process. Technol. 157 (2004) 394.         [ Links ]

13. M. Balaceanu et al., Solid State Sciences 11, (2009) 1773.         [ Links ]

14. W.C. Oliver, and G.M. Pharr, J. Mater. Res. 7 (1992) 1564.         [ Links ]

15. G.S. Kim, S.Y. Lee, and J.H. Hahn, Surf. Coat. Technol. 171 (2003) 91.         [ Links ]

16. V. Hajek, K. Rusnak, J. Vlcek, L. Martinu, and H.M Hawthorne, Wear 213 (1997) 80.         [ Links ]

17. P. Hedenqvis and S. Hogmark, Tribology International 30 (1997) 507.         [ Links ]

18. S.J. Bull, D.S. Rickerby, A. Matthews, A. Leyland, A.R Pace, and J. Valli, Surf. Coat. Technol. 36 (1988) 503.         [ Links ]

19. P. J. Burnett, and D.S. Rickerby, Thin Solid Films 15 (1987) 403.         [ Links ]

20. K. Holmberg, and A. Matthews, COATINGS TRIBOLOGY Properties, Techniques and Applications in Surface Engineering, 1st ed. (ELSEVIER, Gt. Britain, 1994). pp. 40-50.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons