SciELO - Scientific Electronic Library Online

 
vol.58 número4Estimation of length scale of RS II-p braneworld model through perturbations in Helium's atom ground state energySingle shot phase shifting techniques for 4D radial slope measurements of transparent samples índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.58 no.4 México ago. 2012

 

Investigación

 

Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by rf sputtering

 

G.I. Cubillosa, J.J. Olayab, D. Clavijoc, J.E. Alfonsod and M. Bethencourte

 

a Departamento de Química, Universidad Nacional de Colombia, AA 14490, Bogotá- Colombia.

b Facultad de Ingeniería, Universidad Nacional de Colombia, AA 14490, Bogotá- Colombia.

c Facultad de Medicina, Universidad Nacional de Colombia, AA 14490, Bogotá- Colombia. Facultad de Medicina Fundación Universitaria Sanitas, Bogotá-Colombia.

d Departamento de Física Universidad Nacional de Colombia, AA 14490, Bogotá- Colombia. e-mail: jealfonsoo@unal.edu.co

e Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica. Universidad de Cádiz. Centro Andaluz de Ciencia y Tecnología Marinas. Avda República de Saharaui. Puerto real, E-11510. Cádiz- Spain.

 

Recibido el 23 de noviembre de 2011;
aceptado el 16 de mayo de 2012

 

Abstract

Thin films of zirconium oxynitride were grown on common glass, silicon (100) and stainless steel 316 L substrates using the reactive rf magnetron sputtering technique. The films were analyzed through structural, morphological, and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The corrosion resistance studies were made on samples of stainless steel 316 L coated and uncoated with ZrxNyO films, through of polarization curves. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316L through proliferation and cellular adhesion. The XRD analysis shows that films deposited at 623 K, with a flow ratio ΦN2/ΦO2 of 1.25 and a total deposit time of 30 minutes grew preferentially oriented along the (111) plane of the zirconium oxyitride monoclinic phase. The SEM analyses showed that the films grew homogenously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. The analysis of the corrosion resistant, shows that the stainless steel coated with the film was increased a factor 10. Finally; through the analysis of the biocompatibility we established that the films have a better surface than the substrate (stainless steel 316 L) in terms of the adhesion and proliferation of bone cells.

Keywords: Ziconium oxynitride; thin films; bone cells; biocompatibility.

 

PACS: 81.15.Cd; -87.68.+z; -68.43.-h

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors would like to aknowledge the finalcial support given to this project by division de investigación de la Universidad nacional de Colombia under grant No 11842.

 

References

1. E. Eisenbarth, M. Muller, R. Thull, D. Velten, and J. Breme, J. Biomed. Mater. Res. Part A, 79 (2006) 166-175.         [ Links ]

2. H. Matsuno, A. Yokoyama, F. Watari, M. Uo and T. Kawasaki, Biomaterials 22 (2001) 1253-1262.         [ Links ]

3. E. Eisenbarth, D. Velten, M. Muller, and R. Thull, J. Breme. Biomateriales 25 (2004) 5705-5713.         [ Links ]

4. D.G. Castner and B.D. Ratner, Biomedical surface science: Foundations to frontiers. Surf. Sci. 500 (2002) 28-60.         [ Links ]

5. B.D. Ratner, Biosens. Bioelectron. 10 (1995) 797-804.         [ Links ]

6. N. Martin et al., Appl. Surf. Sci. 185 (2001) 123-133        [ Links ]

7. S.H. Mohamed, A.M.A. El-Rahman, and M.R. Ahmed, J. Phys. D: Appl. Phys. 40 (2007) 7057-7062.         [ Links ]

8. J.E. Alfonso, J. Torres, J.F. Marco, Brazilian J. Phys. 36 (2006) 994.         [ Links ]

9. B.D. Cullity, Elements of X-ray Diffraction second ed. (Addison-Wesley, London 1978) p. 102.         [ Links ]

10. A.D. Mazzoni, M.S. Conconi, E.F. Aglietti, Mat. Res. 4 (2000) 107-111.         [ Links ]

11. B.A. Movchan and A.V. Demchishin, Fiz. Met. Metalloved. 28 (1969) 83.         [ Links ]

12. R. Messier, A.P. Giri, R.A. Roy, J. Vac. Sci. and Tech. A. 2 (2, Pt. 1), 500-3.         [ Links ]

13. M. Laurikaitis, S. Burinskas, J. Dudonis, and D. Miléius, J. of Phys.: Conference Series 100 (2008) 08205.         [ Links ]

14. K. Rawal Sushant, A. Kumar Chawla, V. Chawla, R. Jayaganthan, and R. Chandra, Mat. Sci. and Eng. B 172 (2010) 259– 266.         [ Links ]

15. S.C. Ferreira et al., Surface & Coatings Technology 200 (2006) 6634–6639.         [ Links ]

16. E. Ariza et al., Thin Solid Films 469–470 (2004) 274–281.         [ Links ]

17. E.J. Simmons, Corrosion 11 (1955) 255.         [ Links ]

18. R.V. Skold and T.E. Larson, Corrosion 13 (1964) 139.         [ Links ]

19. M. Stern, Corrosion 14 (1958) 329.         [ Links ]

20. M. Stern, Corrosion 14 (1958) 440.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons