SciELO - Scientific Electronic Library Online

 
vol.57 número1Multiphoton ionization of naphthalene clusters at 266 nmEvaluando las sincronizaciones sin y con retroalimentación en circuitos de Lorenz índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.57 no.1 México feb. 2011

 

Instrumentación

 

Design of an optimal control for an autonomous mobile robot

 

E.M. Gutiérrez–Arias, J.E. Flores–Mena, M.M. Morin–Castillo, and H. Suárez–Ramírez

 

Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, Ciudad Universitaria, Colonia Jardines de San Manuel, Puebla, Pue., 72570, México, e–mails: jmgutierrez@ece.buap.mx, eflores@ece.buap.mx, mmorin@ece.buap.mx, hsuarez@hotmail.com.

 

Recibido el 18 de enero de 2010
Aceptado el 11 de noviembre de 2010

 

Abstract

In this article, we present an autonomous mobile robot that is provided with two active wheels and passive one, as well as two control algorithms for the stabilization of the programmed paths. The dynamic programming constitute the bases for the determination of both control laws. The first law of optimal control is obtained by solving the Ricatti matricial differential equation. The second is deduced taking into account the work done by Kalman, which makes possible the reduction of a matricial differential equation into an algebraic matricial equation. The simulation of both algorithms is made when the programmed path is a straight line and this makes possible to observe the optimal control law, which represents the principal goal of this paper, and which presents an improved quality for the stabilization that the control law obtained following the work of Kalman.

Keywords: Mobile robot; optimal control; dynamic programming; Ricatti's differential equation.

 

Resumen

En este trabajo presentamos un robot movil autónomo provisto de dos ruedas activas y una pasiva, así como dos algoritmos de control para la estabilización de las trayectorias programadas; la programación dinámica es el fundamento para determinar ambas leyes de control. La primera ley de control optimo la obtenemos al solucionar una ecuación diferencial matricial del tipo Riccati, la segunda ley se deduce al aprovechar una disertación hecha por Kalman, la cual permite reducir una ecuación diferencial matricial a una ecuación algebraica matricial. La simulación de ambos algoritmos se realiza cuando la trayectoria programada es una línea recta y permite observar que la ley de control óptimo, objetivo primordial de este artículo, presenta una calidad superior en la estabilización que la ley de control obtenida mediante la disertación de Kalman.

Descriptores: Robot móvil; control óptimo; programación dinámica; ecuación diferencial de Riccati.

 

PACS: 45.40.–f; 45.80.+r; 46.15.Cc; 02.30.Yy.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors are grateful for the financial support given by CONACyT of México. JEFM is grateful for the support given by VIEP–BUAP (project 7–ING–2009)

 

References

1. A. Ollero Baturone, Robotica Manipuladores y Robots Moviles (Marcobombo, 2001).         [ Links ]

2. R. Siegwart and I.R. Nourbakhsh, Introduction to Autonomous Mobile Robots (2004).         [ Links ]

3. D.E. Kirk, Optimal Control Theory An Introduction (Printice–Hall, 1970).         [ Links ]

4. G. Knowles, An Introduction to Applied Optimal Control (New York and London Academic Press, 1981).         [ Links ]

5. A. Hemani, M.G. Mehrabi, and R.M.H. Cheng Automatice 28 (1991) 383.         [ Links ]

6. G. Klancar, B. Zupancic, R. Karba Modelling and simulation of a group of mobile robots (Simulation Modelling Practice and Theory 15, ELSEVIER, 2007). pp. 647.         [ Links ]

7. V.V. Alexandrov et al., Introduction to Control of Dynamic Systems 1a ed. (Benemérita Universidad Autónoma de Puebla, 2009).         [ Links ]

8. M.R.M. Crespo da Silva, Intermediate Dynamics (McGraw–Hill, 2004).         [ Links ]

9. Jean Jaques E. Slotine and Li. Weiping, Applied Nonlinear Control (Pearson Education, Republic of China, 2004).         [ Links ]

10. F.C.Moon, Applied Dynamics (John Wiley & Sons, Inc., 1998).         [ Links ]

11. K.R. Symon, Mecanica 2da ed. (Addison–Wesley, 1970).         [ Links ]

12. J. Angeles, Fundamentals of Robotic Mechanical Systems (Springer–Verlag, 1997).         [ Links ]

13. J. Jones and A.M. Flynn, Mobile Robots, Inspiration Implementation (2da ed., Addison–Wesley, 2000).         [ Links ]

14. R. Bellman, Mathematical Theory of Control Processes vol. I (New York and London, Academic Press, 1967).         [ Links ]

15. R. Bellman, Mathematical Theory of Control Processes, vol. II (New York and London Academic Press, 1971).         [ Links ]

16. R.E. Kalman, Contributions to the Theory of Optimal Control (Bulletin of Mexican Mathematic, 1960) P. 102.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons