SciELO - Scientific Electronic Library Online

 
vol.52 número3Incidencia de mosca del cuerno (Haematobia irritans) en vacas asperjadas con extracto de hoja de gobernadora (Larrea tridentata (DC.) Coville)Caracterización física y nutricional de frutos de yuca (Yucca mixtecana) índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Agrociencia

versão On-line ISSN 2521-9766versão impressa ISSN 1405-3195

Agrociencia vol.52 no.3 Texcoco Abr./Mai. 2018

 

Animal Science

Yield performance of growing lambs fed silages with poultry litter, pig excreta and urea with molasses cane or a bakery by-product

José Luis Bórquez-Gastelúm2 

Daniel Trujillo-Gutiérrez1  * 

Ignacio Arturo Domínguez-Vara2 

Juan Manuel Pinos-Rodríguez3 

Mario Antonio Cobos-Peralta1 

1Ganadería. Campus Montecillo. Colegio de Postgraduados. 56230. Montecillo, Estado de México, México.

2Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Instituto Literario número 100, CP 50000 Toluca, Estado de México, México.

3Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana, Veracruz, 91710, México.


Abstract

Livestock excreta are made up of fractions of undigested feed and other nutrients that are incorporated in the animal’s digestive tube. Their production and accumulation are a source of environmental pollution, but they are also a valuable source of nitrogen and minerals for feeding ruminants. The objective of this study was to evaluate diets with corn stover silage, sugarcane molasses (MOL) and bakery by-products (BPP) as sources of hydro-soluble carbohydrates (C), mixed with fresh pig excreta (FPE), dehydrated poultry litter (DPL), and agricultural urea (UR) as sources of nitrogen (N) and their effect on lamb growth and carcass characteristics. The lambs received diets with 145 g PC kg-1 DM and 10 MJ EM kg-1 DM, plus 400 g kg-1 (DM) silage for 60 d. After this time, the lambs were sacrificed to measure productive variables and carcass quality. Dry matter intake (DMI) was analyzed with repeated measures. For yield, fat deposit, and morphometry, a random blocks design was used with a 2 x 3 factorial array. Qualitative variables were analyzed with the Kruskal-Wallis test. Least squares means of DMI at 60 d were not different (p > 0.05) among treatments. However, there was an effect (p≤0.05) of N source on daily weight gain (DWG) and NxC interaction for leg width and thoracic fat thickness. Source of C affected (p≤0.05) yield of leg perimeter, loin area and depth of sub-cutaneous fat. Carcass conformation was inferior (p≤0.05) for the combination BBP with UR; with the other treatments, conformation scores of R to U were obtained. The BBP treatment with FPE caused more (p≤0.05) external fat covering, light pink meat and cream-colored fat. The conclusion is that lambs fed silaged FPE and BBP had carcasses with better conformation and fat.

Key words: carcass characteristics; excreta; silage; cane molasses; bakery by-products

Resumen

Las excretas pecuarias están constituidas por fracciones de alimentos no digeridas y por otros nutrientes que se incorporan en el tubo digestivo de los animales. Su producción y acumulación es fuente de contaminación ambiental, pero también son una fuente valiosa de nitrógeno y minerales en la alimentación de rumiantes. El objetivo de esta investigación fue evaluar dietas con ensilados de rastrojo de maíz, melaza de caña (MEL) y subproducto de panadería (SPP) como fuentes de carbohidratos hidrosolubles (C), mezclados con cerdaza fresca (CF), pollinaza deshidratada (PO) y urea agrícola (UR) como fuentes de nitrógeno (N), y su efecto en el crecimiento y las características de la canal de corderos. Los corderos recibieron durante 60 d dietas con 145 g PC kg-1 MS y 10 MJ EM kg-1 MS, más 400 g kg-1 (MS) de ensilado. Después, los corderos se sacrificaron para medir variables productivas y calidad de la canal. El consumo de MS (CMS) se analizó con medidas repetidas; para rendimiento, engrasamiento y morfometría se empleó el diseño de bloques al azar con arreglo factorial 2 x 3. Las variables cualitativas se analizaron con la prueba Kruskal-Wallis. Las medias de cuadrados mínimos de CMS a los 60 d no presentaron diferencias (p>0.05) entre tratamientos. Sin embargo, hubo efecto (p≤0.05) de la fuente de N sobre ganancia diaria de peso (GDP) e interacción de NxC para ancho de pierna y grosor de grasa torácica. La fuente de C afectó (p≤0.05) el rendimiento del perímetro de pierna, área de chuleta y profundidad de grasa subcutánea. La conformación de la canal fue inferior (p≤0.05) para la combinación SPP con UR; con los otros tratamientos se obtuvieron grados de conformación de R a U. El tratamiento SPP con CF causó las mayores (p≤0.05) coberturas de grasa externa, color de carne rosa claro y color de grasa crema. La conclusión es que los corderos alimentados con ensilado de CF y SPP tuvieron canales con mejor conformación y engrasamiento.

Palabras clave: características de la canal; excretas; ensilaje; melaza de caña; subproducto de panadería

Introduction

In Mexico, poultry litter derived from the poultry industry is used as a source of non-protein nitrogen (NNP) to feed ruminants, especially cattle. Its use varies as it is thrown out from the poultry farm (Ríos et al., 2005) up to after silaging (Bórquez et al., 2009). Public fear concerns sanitary risks involved in the use of animal excreta to feed livestock species because pathogenic organisms, toxins, parasites, viruses, arsenic substances, antibiotics, drugs, hormones, coccidiostats, heavy metals and trace elements can be present in these wastes (McCaskey, 1979). However, there is evidence that the process of silaging decreases the microbial load, specifically coliforms and clostridia (Iñiguez-Covarrubias et al., 1990; López-Garrido et al., 2014), of the excreta. Another risk is transmissible spongiform encephalopathy (TSE), but Novafoski et al. (2005) and Hedman et al. (2016) ruled out transmission of the prion from pigs to sheep and goats. Moreover, pigs and poultry are naturally resistant to its transmission (Denton et al., 2005). In this respect, Wells et al. (2003) offered livestock cephalic material to pigs and did not observe TSE expression. Therefore, there is no overwhelming evidence that pigs become infected with TSE under natural conditions (Jahns et al., 2006). It is thus possible to use it to feed ruminants.

Studies conducted by our research group indicate that poultry and pig excreta silaged in combination with sources rich in soluble carbohydrates such as molasses or bakery waste can be an important source of nutrients for ruminants (Mejía-Uribe et al., 2013; Trujillo et al., 2014; Martínez et al., 2015). However, the effect of these silage materials on morphometry and carcass characteristics of growing lambs is unknown. Their nutrient value and safety of these inputs for ruminant feed are confirmed; thus, we can hypothesize a similar response in trials of productive behavior in growing lambs. Therefore, the objective of this study was to evaluate the effect of diets with fresh pig excreta, poultry litter or agricultural urea silaged with cane molasses or bakery by-products plus concentrate on lamb morphometry, growth and carcass yield.

Materials and Methods

This experiment is the second part of a study conducted by our research group in which the same diets reported by Trujillo et al. (2014) were evaluated. To make the silages (Table 1), we used the methodology of Cobos et al. (1997) and Bórquez et al. (2009), and Sil-All 4x4® (10 mg kg-1 DM; Lactobacillus plantarum, Pediococcus acidilactii, Enterococcus faecium and Lactobacillus salivarius) was added. After 21 d, the quality of the silages was evaluated according to Frankel (1984).

Table 1 Formulation and levels of inclusion of ingredients in the silages. 

  MEL SPP
PO CF UR PO CF UR
Ingredientes, g kg-1 MS
Rastrojo de maíz 385 295 630 385 295 630
Pollinaza deshidratada 385 385
Cerdaza fresca 529 529
Urea agrícola 30 30
Melaza de caña 231 177 340
Subproducto de panadería       231 177 340

Collected from the area of growing pigs at the animal production post of the School of Veterinary Medicine and Animal production of the Universidad Autónoma del Estado de México. MOL, cane molasses; BBP, bakery by-product; DPL, dehydrated poultry litter; FPE, fresh pig excreta; UR, agricultural urea.

The chemical composition (Table 2) of DM (934.1), CP (954.01), and ash (942.05) was determined according to AOAC (1990). Acid detergent fiber (ADF), neutral detergent fiber (NDF) and acid detergent lignin (ADL) were determined with procedure 973.18 (AOAC, 1990) and the method of Van Soest et al. (1991) with ANKOM200 equipment (ANKOM Technology Corporation, Fairport, NY, USA). NDF was analyzed without alpha amylase, but with sodium sulfite; NDF and ADF were expressed without residual ash. pH was measured in the aqueous extract (Shaver et al., 1984) of the silages with a potentiometer (Benchtop Cole Parmer 05669-20, Vernon Hills, IL, USA).

Table 2 Chemical composition (g kg-1 DM) and silage quality. 

  MEL SPP
PO CF UR PO CF UR
MS 431 369 422 416 342 338
PC 165 119 160 170 131 151
Cenizas 110 96 73 111 77 91
FDN 425 351 383 385 370 444
FDA 290 201 237 214 198 250
LDA 61 44 48 60 44 52
EM, Mcal kg-1 MS 1.82 1.85 1.82 1.84 1.82 1.83
Calidad de ensilado
pH 4.0 4.1 4.2 4.1 4.2 4.2
Aceptabilidad (rango: 10 - 17) 13 11 10 14 10 10
Textura (1= seco, 5= pastoso) 5 5 5 5 5 5
Olor 12 12 12 12 12 11
Color 3 3 3 3 3 3
Desperdicio, % 0 0 1 0 0 1
Calificación§ 20 20 20 20 20 19
Costo, (US$) BS 0.12 0.07 0.12 0.09 0.05 0.15

Color (0, poor - 3, good). §Score (18 - 20 very good; 10 - 17, satisfactory; 4 - 9, poor to regular; 0 - 3, very poor). MOL, cane molasses; BBP, bakery by-product; DPL, dehydrated poultry litter; FPE, fresh pig excreta; UR, agricultural urea.

Metabolizable energy (EM) of the silages and diets was determined with the technique of in vitro gas production (Menke et al., 1979; Theodorou et al., 1994) and evaluated following Menke and Steingass (1988).

The diets (Table 3) contained 400 g kg-1 DM silage and 600 g kg-1 DM concentrate, with a similar content of N x 6.25 (145 g kg-1 DM) and energy (10 MJ ME kg-1 DM) for growing lambs (NRC, 2007).

Table 3 Diet ingredients and chemical composition. 

  MEL SPP
PO CF UR PO CF UR
Ingredientes, g kg-1 MS
Ensilado 400 400 400 400 400 400
Rastrojo de maíz 108 120 130 146 150 147
Grano de maíz molido 397 330 369 359 308 332
Salvado de trigo 40 40 36 40 40 40
Harina de soya, 44 % PC 20 75 30 20 67 46
Harina de pescado 10 10 10 10 10 10
Premezcla de vitaminas y minerales 25 25 25 25 25 25
Composición química, g kg-1 MS
MS 616 584 620 625 564 611
PC 146 144 144 146 144 144
Cenizas 79 69 72 76 68 80
FDN 306 317 416 373 355 418
FDA 152 160 233 190 185 216
LDA 43 30 45 44 40 46
EM, Mcal kg-1 MS 10 10 10 10 10 10
Ca 12 12 8 11 11 7
P 6 6 3 6 7 4
Costo (US$) BS 0.16 0.13 0.19 0.14 0.17 0.16

P, 6.0 %; Ca, 16 %; Na, 10 %; K, 0.2 %; Zn, 0.3 %; Cu, 0.06 %; Fe, 0.18 %; S 0.4 %; Mg, 0.2 %; Mn, 0.2 %; I, 20 ppm; Co, 6 ppm; Se, 12 ppm; Vitamin A, 50000 UI kg-1; Vitamin D, 10000 UI kg-1; Vitamin E, 250 UI kg-1. MOL, cane molasses; BBP, bakery by-product; DPL, dehydrated poultry litter; FPE, fresh pig excreta; UR, agricultural urea.

Feeding and carcass characteristics

This study was conducted in the metabolic unit of the animal production post of the Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, with 30 male Rambouillet x Criollo lambs (initial weight 24.05 ± 3.68 kg). The lambs were housed in individual 2 m2 corrals, equipped with waterer and feeder. Before the experiment, initial weight (kg) was recorded, and each lamb received ivermectin 1 % (0.2 mg kg-1), vitamin B complex and ADE (VITAFORT ADE+B®; 4 mL) and was vaccinated (Bobact- 8®; 2.5 mL). In addition, they underwent a 10-d period of adaptation to feed and handling. During the experiment, DMI and feeder reading were recorded daily to assure that the offered feed was 10 % more than the feed consumed the previous day (Harris, 1970). Feed was offered at 0900 h and at 1500 h with free access to water. The fattening period was 60 d and every 15 d changes in weight, feed conversion (FC) and feed efficiency (FE) were recorded (McDonald et al., 2011; Church et al., 2002). At all times, the lambs were treated following the protocols of the Ley Federal de Sanidad Animal in force and NOM-062-ZOO-1999. At the end of the fattening period, all the lambs were fasted for 24 h and weighed before being sacrificed, complying at all times with the applicable regulations (NOM-033-ZAG/ZOO-2014). After sacrifice, carcass yield and fat characteristics and conformation were evaluated (European Community, 2008), and morphometry, degree of fat (Colomer et al., 1987, 1988) and pelvic-renal fat were analyzed (Delfa et al., 1992). To determine the ribeye area (Longissimus dorsi) between the 12th and 13th rib, the grid method was used (USDA, 2011; Thayer et al., 2000).

Experimental designs and statistical models

Dry matter intake was analyzed with repeated measurements and the experimental design was split block proposed by Littell et al. (2002, 2006) and Steel et al. (1997). Carbohydrate source (MOL and BBP) were assigned to the large plot and source of N (DPL, FPE and UR) were assigned to the small plots:

yijk=μ+αi+βχij+bij+γk+αγik+eijk

where y ijk , is the response in period k of the j th lamb assigned to treatment i; µ, general mean of the treatment; α i , treatment i; β, coefficient of regression; X ij , initial weight as covariable; b ij , random effect associated with the j th lamb in treatment i assuming N(0, σB 2); γ k , measurement period k; (αγ) ik , interaction of treatment i with period and measurement k; e ijk , random error associated with the j th lamb assigned to treatment i in period k, i.i.d. N(0, α2).

For the statistical analysis, we used the MIXED procedure (SAS Institute Inc., 2004; Littell et al., 2006) considering the treatments and periods of measurement as fixed effects and lambs as random effects, with the Toeplitz (TOEP) correlation model. Orthogonal contrasts were carried out with the options CONTRAST and LSMESTIMATE.

For analysis of the carcass yield variables fat thickness and morphometry, the experimental design was random blocks with 2x3 factorial arrangement (Dean and Voss, 1999). The statistical model was:

Yhijt=μ+Θh+γi+δj+γδij+Θγhi+Θδhj+Θγδhij+ehijt

where μ: general mean of the treatment; θ h : effect of the block (initial lamb weight); γ i : source of carbohydrates (cane molasses and bakery by-product); δ j : source of nitrogen (poultry litter, fresh pig excreta and urea); (γδ) ij : effect of the interaction between factors (NxC); (θγ) hi : block interaction with sources of carbohydrates; (θδ) hj : block interaction with nitrogen source; (θγδ) hij : block interaction with carbohydrate source and nitrogen source; e hijt : random error associated with block h, carbohydrate source i, nitrogen source j and error associated with observation t, i.i.d. N(0, σ2).

Quantitative variables were analyzed with GLM (SAS Institute Inc., 2004), and differences of the means of least squares were obtained.

The treatments were assigned randomly to the experimental units (lambs) and MOL with UR and BBP with UR were considered controls since they only contain soluble N.

Analysis of differences of the medians of each subjective variable was performed with the Kruskal-Wallis test (p ≤ 0.05) to compare the treatments (Sprent and Smeeton, 2001; Corder and Foreman, 2009) with a completely randomized design. The treatments were considered independent samples with PROC NPAR1WAY (SAS Institute Inc., 2004).

Results and Discussion

Dry matter intake (DMI)

Means of least squares of DMI at 60 d were not different (p > 0.05) among treatments (Table 4).

Table 4 Effect of including excreta and urea in silage in lamb diets on yield. 

  MEL SPP  
PO CF UR PO CF UR EEM
Peso vivo inicial, kg 22.7 25.9 21.3 24.9 26.4 22.8 2.09
Peso vivo vacío (final), kg 31.3 34.7 27.7 33.9 32.4 29.7 1.47
GDP, g d-1 161.4 167.2 116.3 175.1 160.2 146.6 14.51
CMS, g d-1 831.5 794.9 805.5 864.5 836.2 705.5 81.45
CA, kg 5.0 5.0 6.2 5.0 5.9 5.6 0.65
EA, g kg-1 204.0 205.1 178.2 204.4 193.3 184.0 25.13
Peso canal caliente, kg , 13.0 14.0 11.2 14.3 15.2 12.4 0.95
Peso de la canal fría, kg 12.4 13.6 11.2 13.6 14.7 12.1 0.93
Rendimiento verdadero, % 39.6 39.1 40.5 40.2 45.3 40.6 1.69

Linear effect of carbohydrate source; effect of nitrogen source, p ≤ 0.05; §effect of carbohydrate source, p ≤ 0.05; NxC interaction N source x C source, p ≤ 0.05; SEM: standard error of the mean. MOL, sugarcane molasses; BBP, bakery by-product; DPL, dehydrated poultry litter; FPE, fresh pig excreta; UR, agricultural urea.

These results for DMI are similar to those reported by Abdulazeez et al. (2016), who fed rams diets with different levels of maize ears treated with an aqueous solution of urea (50 g kg-1 DM) plus wood ash (180 g kg-1 DM). Jayasuriya et al. (1983) fed lambs wheat straw treated with NH3 and urea; they observed similar DMI among treatments and concluded that this response was due to the increase in hemicellulose digestibility. Our results are similar to those of Bórquez et al. (2010) for DMI, N balance and digestibility of DM, OM, CP, NDF, and ADF in lambs fed silage (270 g kg-1 DM) based on cattle manure, maize stover, sugarcane molasses or bakery by-product plus tallow. In contrast, with increasing levels of sorghum stubble with urea (1.4 a 2.8 g kg-1 DM) in kid diets, Olafadehan and Adebayo (2016) observed a linear decrease in DMI and DWG, which they attributed to a reduction in palatability, ruminal degradation, increase in retention time of feed in the digestive tube, and probably because of excess NH3 and increased metabolic heat (Burrin and Mersmann, 2005).

According to Ali et al. (2012), with maize stover silaged with urea NH3 or urea plus cattle manure, DMI improved in adult sheep; they concluded that inclusion of excreta is beneficial to the palatability of the silages. In this respect, Sarwar and Shahzad (2011) observed similar behavior in steers fed silage composed of cattle manure, wheat straw, cane molasses and urea, substituting bypass protein. According to Azizi-Shotokhoft et al. (2015), DMI decreased in lambs fed diets with increasing levels of heat-processed poultry litter; they attributed this to the physical form of the feed. Seok et al. (2016) reported a similar effect when they included silaged poultry litter plus substrate from mushroom cultivation, wheat straw and caramelized maize residue in diets for sheep.

However, the effects of these silages on metabolic behavior, in vitro and in situ, contrast with the findings of Trujillo et al. (2014) and Martínez et al. (2015), who obtained higher DMI with DPL diets with MOL or BBP and MOL with FPE. In addition, UR with BBP obtained lower values of DMI due to higher NDF content, but all the diets had similar contents of CO and EM, which contributed sufficient non-protein nitrogen and hydro-soluble carbohydrates for NH3 absorption in the ruminal epithelium, and therefore, for control of satiety (Burrin and Mersmann, 2005).

Yield and carcass characteristics

In our study gives there was an effect (p≤0.05) of N source on DWG, empty live weight and hot carcass weight; yield was higher with DPL and FPE diets (Table 4). This effect could have been due to higher N intake and retention in lambs fed with the same diets (Trujillo et al., 2014), which supplied the necessary nitrogen and energy for VFA and microbial protein synthesis in the rumen, permitting extensive absorption of VFA and NH3 in the rumen epithelium as well as amino acids in the small intestine for synthesis of muscular tissue (Przybylski and Hopkins, 2016). Diets with maize stover ad libitum (664 g kg-1 DM) plus concentrate (336 g kg-1 DM) composed of wheat bran, cottonseed paste, cane molasses and urea (60, 139, 75 and 6 g kg-1 DM, respectively) increased heifer DWG due to the higher quantity and availability of fermentable sugars from the cane molasses, relative to treatments with lower amounts of non-protein nitrogen and soluble carbohydrates (Assefa et al., 2013).

Lambs fed peanut shells with urea (4 g kg-1 DM) increased N-NH3 concentration in ruminal liquid, DMI, DWG and FC (Hameed et al., 2013). Ko et al. (2001) fed Hanwoo steers three integral diets (silage plus concentrate): 1) maize silage (ES), 2) ES with wheat straw treated with NH3 (control), and 3) ES with silaged chicken manure (300 g kg-1 DM). Diet 3 increased DWG and carcass weight and reduced thoracic fat thickness.

In our experiment, there was an effect (p≤0.05) of N source on intact carcass length, carcass half length, leg length, loin area, feet and head (Table 5). Leg width was affected (p≤0.05) by the interaction NxC, and the C source affected (p≤0.05) leg perimeter and loin area. Demirel et al. (2013) observed an increment in carcass length and hind leg length when weaned Tahirova x Sakiz lambs were fed triticale/oat silage mixed with inoculants, enzymes and oats, compared with those fed diets of grass hay+oats and triticale/oat silage. The results of our study coincide with those of Hajji et al. (2015), who observed an effect of N level on weight of lungs and heart in lambs. Ríos-Rincón et al. (2014) formulated diets for Pelibuey x Katahdin lambs with 175.5 - 145 g kg-1 DM of CP, and 12.76 - 11.84 MJ kg DM of ME based on rolled maize, soybean paste, Sudan grass, cane molasses and beef fat. There were no significant differences in GWG, FC, true yield, loin area, or thoracic fat thickness, but fat deposit in the pelvic renal cavity and on the heart increased with the interaction of high levels of N and ME.

Table 5 Morphometry and yield of the fifth fourth of lambs fed experimental silages. 

  MEL SPP  
PO CF UR PO CF UR EEM
Longitud de la canal intacta, cm , 65.6 68.0 62.9 67.9 69.0 65.4 1.60
Longitud de la media canal, cm 61.5 60.4 57.2 61.7 61.0 56.3 1.31
Ancho de grupa, cm 22.0 21.2 22.5 23.1 21.5 19.2 1.41
Ancho mayor de tórax, cm 18.9 20.4 16.1 20.3 20.3 19.6 1.36
Ancho menor de tórax, cm 16.4 17.6 13.7 17.4 17.4 16.7 1.19
Longitud de pierna, cm 27.7 29.1 20.6 27.2 29.5 20.4 1.23
Profundidad de la canal, cm 24.7 25.2 23.0 25.3 25.6 23.9 0.59
Perímetro de pierna, cm C 57.2 61.5 59.8 60.7 61.2 56.7 1.43
Ancho de pierna, cm NxC 20.2 21.5 20.8 21.8 20.7 19.5 0.57
Área de la chuleta, cm2 , , L 10.2 12.6 9.3 12.4 14.3 12.9 0.91
Pulmones y corazón, kg 1.1 1.5 1.4 1.4 1.4 1.2 0.10
Vísceras vacías, kg 2.6 2.6 2.5 2.6 2.6 2.5 0.19
Patas y cabeza, kg 2.8 3.0 2.5 2.8 2.9 2.7 0.09
Sangre, kg 1.3 1.2 1.3 1.3 1.3 1.3 0.03

Effect of the nitrogen source, p ≤ 0.05; linear effect of carbohydrate source; C effect of carbohydrate source, p ≤ 0.05; NxC interaction of N source x C source, p ≤ 0.05; SEM: standard error of the mean. MOL, cane molasses; BBP, bakery by-product; DPL dehydrated poultry litter; FPE, fresh pig excreta; UR, agricultural urea.

Subcutaneous fat thickness (Table 6) of the carcass was affected by the interaction NxC in the second measurement, suggesting that substituting hydro-soluble carbohydrates and non-protein nitrogen of the silages did not provide sufficient ME or CP. According to Kerry et al. (2002), this produces a higher degree of fat deposit and increases muscle and carcass weight. Moreover, subcutaneous fat thickness for BBP and FPE have similar values in lambs fed maize silage plus cane bagasse (Suliman et al., 2016). With similar percentages of sugar beet molasses in lamb diets, Taheri et al. (2013) found thicker back fat (4.6 mm) and similar DWG.

Table 6 Effect of the lamb diets on fat and carcass conformation of growing lambs. 

  MEL SPP  
PO CF UR PO CF UR EEM
Profundidad de grasa subcutánea (3a)
Primera medición, mm 3.6 3.5 3.2 4.0 6.0 3.1 0.62
Segunda medición, mm NxC 3.0 3.9 3.2 3.6 6.0 2.4 0.53
Grosor de grasa torácica (3b), mm 3.4 3.8 3.4 3.8 5.2 2.1 0.56
Conformación* O O R R U P -
Prueba de Kruskal-Wallis p ≤
Grado de engrasamiento de cobertura 1.8 2.5 1.4 2.4 4.0 1.8 0.01
Cobertura grasa interna 2.4 2.8 3.0 2.80 2.6 2.8 NS
Color de carne 1.8 2.0 1.2 2.0 2.0 1.8 0.05
Color de grasa de cobertura (subcutánea) 1.2 1.3 1.0 1.0 2.0 1.0 0.01

Linear effect of carbohydrates; *Median, effect of nitrogen source (p ≤ 0.05); Ceffect of carbohydrate source (p ≤ 0.05); NxCinteraction N source x C source (p ≤ 0.05); SEM: standard error of the mean. S, superior; E, excellent; U, very good; R, good; O, less good; P, inferior. Degree of covering fat (1, very lean; 5, very fatty). Internal fat coverage (1, kidney cover; 2, small window; 3, large window; 4, uncovered). Meat color (1, pale muscle; 2, pink muscle; 3, red muscle). Cover fat color (1, white; 2, cream-colored; 3, yellow). MOL, cane molasses; BBP, bakery by-product; DPL dehydrated poultry litter; FPE fresh pig excreta; UR, agricultural urea.

In our study, the N source increased (p≤0.05) thoracic fat thickness in BBP treatments with FPE and BBP with DPL. Inferior conformation (P) of the carcass was found with the combination of BBP with UR, characterized by deficient muscular development. With the other treatments, conformation scores were O to U, the latter of which are short, wide, and round carcasses. The diet with BBP and FPE, relative to other treatments, produced greater (p≤0.05) states of external fat cover (carcass fat, 4; characterized by covering most of the carcass, but is less thick over hind legs), meat color (light pink) and fat color (cream), which is related to higher leg, loin, economic valuation of cuts and lean meat (Nsoso et al., 2000). All the treatments caused similar (p>0.05) degrees of pelvic and renal cavity fat. Azizi-Shotokhoft et al. (2015) report a decrease in visceral and internal fat weight as the content of poultry litter increases linearly (140 g kg-1 DM) in the diet. Moreover, there were no effects on other carcass components.

Ko et al. (2001), who fed Hanwoo steers maize-silage-based diets with poultry litter, found no differences in sirloin area, meat color or fat color, relative to the control group. Diets for lambs with 160 g CP kg-1 DM with faba bean (500 g kg-1 DM) and barley (500 g kg-1 DM) components plus ad libitum oat hay promoted greater accumulation of fatty deposits and weight of empty viscera (Hajji et al., 2015), and with 110 g CP kg-1 DM (without faba bean), meat color, leg yield, and pelvic and renal fat improved.

Conclusions

Inclusion of silaged material with different sources of nitrogen and carbohydrates did not affect dry matter intake, feed conversion, feed efficiency or true carcass yield.

Diets with silaged fresh pig excreta and bakery by-products and with silaged fresh pig excreta and cane molasses improved carcass morphometry, conformation and fat deposit in carcass of growing lambs.

Literatura Citada

Abdulazeez, A., C M. Tsopito, O R. Madibela, and J M. Kamau. 2016. Effect of urea/wood ash-treated maize cobs as substitute for maize grain in sheep diet on intake, digestibility, nitrogen utilization, rumen NH3-N and pH. J. Anim. Sci. 6: 1580-1581. [ Links ]

Ali, I., J P. Fontenot, and V G. Allen. 2012. Effects of feeding corn stover treated with different nitrogen sources on palatability and dry matter intake in sheep. J. Vet. Anim. Sci. 2:11-12. [ Links ]

AOAC, 1997. Official methods of analysis (16th ed). Association of Official Analytical Chemists. Arlington, Virginia, USA. Vol. 1. 771 p. [ Links ]

Assefa, D., A. Nurfeta, and S. Banerjee. 2013. Effects of molasses level in a concentrate mixture on performances of crossbred heifer calves fed a basal diet of maize stover. J. Cell Anim. Biol. 7:1-8. [ Links ]

Azizi-Shotokhoft, A., J. Rezai, N. Papi, D. Mirmohammadi, and H. Fazaeli. 2015. Effect of feeding heat-processed broiler litter in pellet-form diet on the performance of fattening lambs. J. Appl. Anim. Res. 43: 184-190. [ Links ]

Bórquez, J L., S S. González-Muñoz, J M. Pinos-Rodríguez, I. Domínguez, J R. Bárcena, G D. Mendoza, M A. Cobos, and G. Bueno. 2009. Feeding value of ensiling fresh cattle manure with molasses or bakery by-products in lambs. Livest. Sci. 122: 276-280. [ Links ]

Bórquez, J L., J M. Pinos-Rodríguez, S S. González-Muñoz, I. Domínguez, R. Bárcena, G. Mendoza, and M. Cobos. 2010. Use of different kind of silage dairy cattle manure in lamb nutrition. Ital. J. Anim. Sci. 9: 129-133. [ Links ]

Burrin, D G. and H. Mersmann. 2005. Biology of metabolism in growing animals. Elsevier. London, U.K. 491 p. [ Links ]

Church, D C., W G. Pond, and K R. Pond. 2002. Fundamentos de la nutrición y alimentación de animales. Segunda edición. Edit. LIMUSA WILEY. México. 635 p. [ Links ]

Cobos, P M., S M. González, G D M., Mendoza, C B. García, and R G. Bárcena. 1997. Nutritional evaluation of cattle manure, molasses and corn stover silage for lambs. Small Rumimant Res. 25:33-38. [ Links ]

Colomer, R F., F P. Morand, A H. Delfa, and A I. Sierra. 1988. Métodos normalizados para el estudio de los caracteres cuantitativos y cualitativos de las canales caprinas y ovinas. Ministerio de Agricultura Pesca y Alimentación. INIA. Madrid, España. 32 p. [ Links ]

Colomer, R F., F P Morand, and A. H. Kirton. 1987. Standard methods and procedures for Goat carcass evaluation, jointing and tissue separation. Liv. Produc. Sci. 17: 149-159. [ Links ]

Corder, G W. and D. I. Foreman. 2009. Nonparametric Statistics for Non-statisticians: A Step-by-step Approach. John Wiley & Sons, Inc. Hoboken, New Jersey. USA. 264 p. [ Links ]

Dean, A. M., and D. T. Voss. 1999. Design and analysis of experiments. Springer-Verlag, New York, Inc. 753 p. [ Links ]

Delfa, R., A. Teixeira, and D. González. 1992. Composición de la canal. Medida de la composición. Ovis. 23: 9-22 [ Links ]

Denton, J H., C N. Coon, J E. Pettigrew, and C M. Parsons. 2005. Historical and scientific perspectives of same species feeding of animal by-products. J. Appl. Poult. Res. 14:352-361. [ Links ]

Demirel, G., A Y. Pekel, B. Ekiz, H. Biricik, N. Kocabağli, and M. Alp. 2013. The effects of barley/triticale silage on performance, carcass characteristics, and meat quality of lambs. Turk. J. Vet. Anim. Sci. 37: 727-733. [ Links ]

European Community. 2008. Commision Regulation (CE) no 1249/2008 of 10 December 2008 laying down detailed rules on the implementation of the community scales for the classification of beef, pig and sheep carcases and the reporting of prices thereof. Off. J. Eur. Union, L 337/3. http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1473400865387&uri=CELEX:32008R1249 . (Accessed: January 2016). [ Links ]

Frankel, M A. 1984. Conservación de forrajes: henificación, ensilado, deshidratación. Albatros, Buenos Aires, Argentina. 150 p. [ Links ]

Hajji, H., S. Smeti, M. Ben Amouda, and N. Atti. 2015. Effect of protein level on growth performance, non-carcass components and carcass characteristics of young sheep from three breeds. Anim. Prod. Sci. 56: 1-7. [ Links ]

Hameed, A A M A., F E L A M. Seed, and A M. Salih. 2013. Growth performance and rumen fermentation of lambs fed untreated or urea treated groundnut hull with different protein sources. J. Anim. Prod. Adv. 3: 86-96. [ Links ]

Harris, L E. 1970. Nutrition research techniques for domestic and wild animals. An international record system and procedures for analyzing samples. 1408 Highland Drive, Logan Utah, USA, Vol. 1. 651 p. [ Links ]

Hedman, C., R. Bolea, B. Marín, F. Cobrière, H. Filali, F. Vázquez, J. L. Pitarch, A. Vargas, C. Acín, B. Moreno, M. Pumarola, O. Andreoletti, and J. Badiola. 2016. Transmission of sheep-bovine spongiform encephalopathy to pigs. Vet. Res. 47: 1-15. [ Links ]

Iñiguez-Covarrubias, G., J A. Cuarón-Ibargüengoitia, P. Pérez-Gavilán, M de la Torre-Martinez, and P I. Magaña. 1990. Fermentation characteristics, digestibility and performance of ensiled swine waste, wheat straw and cane molasses fed to sheep. Biol. Wastes 34: 281-299. [ Links ]

Jahns, H., J J. Callanan, D J. Sammin, M C. McElroy, and H F. Bassett. 2006. Survey for transmissible spongiform encephalopathies in Irish pigs fed meat and bone meal. Vet. Rec. 159: 137-142. [ Links ]

Jayasuriya, M. C. N., and G. R. Pearce. 1983. The effect of urease enzyme on treatment time and the nutritive value of straw treated with ammonia as urea. Anim. Feed Sci. Technol. 8: 271-281. [ Links ]

Kerry, J., J. Kerry, and D. Ledward. 2002. Meat processing. Improving quality. CRC. Boca Raton FL. USA. 475 p. [ Links ]

Ko, Y D., J H. Kim, and C-H. Kim. 2001. Influence of whole crop corn silage ensiled with poultry manure on the performance and carcass quality of Hanwoo steers. Asian-Austral. J. Anim. Sci. 14: 1133-1137. [ Links ]

Littell, R C., W W. Stroup, and R J. Freund. 2002. SAS® for linear models, Fourth edition. SAS Institute Inc., Cary, North Carolina, USA. 493 p. [ Links ]

Littell, R C., G A. Milliken, W W. Stroup, R D. Wolfinger, and O. Schabenberger. 2006. SAS® for mixed models, Second edition. SAS Institute Inc. Cary, NC. 834 p. [ Links ]

López-Garrido, S J., P M A Cobos, M D G. Mendoza, and M A Camacho-Escobar. 2014. The effect of commercial additive (toxic-chec) and propionic acid on the fermentation and aerobic stability of silage with pig excreta. Am. J. Exp. Agric. 4: 1820-1831. [ Links ]

Martínez, S F., V I A. Domínguez, J L. Bórquez, and M. González-Ronquillo. 2015. The effect of feeding fresh swine manure, poultry waste, urea, molasses and bakery by-products ensiled for lambs. Int. J. Recycl. Org. Waste Agricult. DOI 10.1007/s40093-015-0106-2. [ Links ]

McCaskey, T A., and W B. Anthony. 1979. Human and animal aspects of feeding livestock excreta. J. Anim. Sci. 48: 163-177. [ Links ]

McDonald, P., R. A. Edwards, J. F. D. Greenhalgh, C. A. Morgan. L. A. Sinclair, and R. G. Wilkinson. 2011. Animal nutrition. 7th ed. Benjamin Cummings, USA. 712 p. [ Links ]

Mejía-Uribe, L A., J L. Bórquez, A Z M. Salem, I A. Domínguez-Vara, and M. González-Ronquillo. 2013. Short communication. Effects of adding different protein and carbohydrates sources on chemical composition and in vitro gas production of corn stover silage. Spanish J. Agric. Res. 11: 427-430. [ Links ]

Menke, K H., L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider. 1979. The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. (Cambridge) 92: 217-222. [ Links ]

Menke K H, andH. Steingass. 1988. Estimation of the energetic fed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28: 7-12. [ Links ]

NOM-033-SAG/ZOO-2014. Métodos para dar muerte a los animales domésticos y silvestres. http://www.dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015 (Accessed: July 2016). [ Links ]

NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. http://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (Accessed: July 2016). [ Links ]

Novafoski, J., M S. Brewer, N. Mateus-Pinilla, J. Killefer, and R H. McCusker. 2005. Prion biology relevant to bovine spongiform encephalopathy. J. Anim. Sci. 83: 1445-1476. [ Links ]

NRC. 2007. Nutrient requirements of small ruminants (sheep, goats, cervids and new world camelids). Washington, DC: National Academy Press. 362 p. [ Links ]

Nsoso, S J., M J. Young, and P R. Beatson. 2000. A review of carcass conformation in sheep: assessment, genetic control and development. Small Rumimant Res. 35: 89-96. [ Links ]

Olafadehan, O A., and O F. Adebayo. 2016. Nutritional evaluation of ammoniated ensiled threshed sorghum top as a feed for goats. Trop. Anim. Health Prod. 48: 785-791. [ Links ]

Przybylski, W. and D. Hopkins. 2016. Meat quality. Genetic and enviromental factors. CRC Press. Taylor & Francis Group. Boca Raton, FL. USA. 480 p. [ Links ]

Ríos, A. L., J. Combellas, and Z A. Álvarez. 2005. Uso de excretas de aves en la alimentación de ovinos. Zootec. Trop. 23: 183-210. [ Links ]

Ríos-Rincón, F. G., A. Estrada-Angulo, A. Plascencia, M A. López-Soto, B I. Castro-Pérez, J J. Portillo-Loera, J C. Robles-Estrada, J F. Calderón-Cortes, and H. Dávila-Ramos. 2014. Influence of protein and energy level in finishing diets for feedlot hair lambs: growth performance, dietary energetics and carcass characteristics. Asian-Austral. J. Anim. Sci. 27: 55-61. [ Links ]

Sarwar, M. and M A. Shahzad. 2011. Feeding value of urea molasses-treated wheat straw ensiled with fresh cattle manure for growing crossbred cattle calves. Trop. Anim. Health Prod. 43: 543-548. [ Links ]

SAS Institute Inc. 2004. SAS/STAT® 9.1 User’s Guide. Cary, NC: SAS Institute Inc. 5136 p. [ Links ]

Seok, J S., Y I. Kim, Y H. Lee, D Y. Choi, and W S. Kwak. 2016. Effect of feeding a by-products feed-based silage on nutrients intake, apparent digestibility, and nitrogen balance in sheep. J. Anim. Sci. Technol. 58: 1-5. [ Links ]

Shaver, R D., R A. Erdman, and J H. Vadersall. 1984. Effects of silage pH on voluntary intake of corn silage. J. Dairy Sci. 67: 2045-2049. [ Links ]

Sprent, P., and N C. Smeeton. 2001. Applied nonparametric statistical methods. 3rd ed. Chapman & Hall/CRC. Boca Raton, Florida, USA. 463 p. [ Links ]

Steel, G D R., H J. Torrie, and D A. Dickey. 1997. Principles and procedures of statistics: a biometrical approach. Ed 3. Edit. McGraw Hill Companies, Inc. Michigan, USA. 633 p. [ Links ]

Suliman, A I A., M M B. Azza, and I M. Ebtehag. 2016. Performance of lambs fed on biologically treated silages. Int. J. Chem. Tech. Res. 9: 151-160. [ Links ]

Taheri, M R., M J. Zamiri, E. Rowghani, and A Akhlaghi. 2013. Effect of feeding olive-pulp ensiled with additives on feedlot performance and carcass attributes of fat-tailed lambs. Trop. Anim. Health Prod. 45: 345-350. [ Links ]

Thayer, S L., D. Glauer, and N. Snook. 2000. Sheep resource handbook for market and breeding projects. The Oklahoma State University. College of Food Agricultural and Environmental Science. Product code 194R. 168 p. [ Links ]

Theodorou, M K., B A. Williams, M S. Dhanoa, A B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48:185-197. [ Links ]

Trujillo, G D., G J L. Bórquez, J M. Pinos-Rodríguez, I A. Domínguez-Vara, and R R. Rojo. 2014. Nutritive value of ensiled pig excreta, poultry litter or urea with molasses or bakery by-products in diets for lambs. South Afr. J. Anim. Sci. 44: 114-122. [ Links ]

USDA. 2011. Method for grid assessment of beef carcass ribeye area. https://www.ams.usda.gov/sites/default/files/media/Method_for_Grid_Assessment_of_Beef_Carcass_Ribeye_Area%5B1%5D.pdf (Accessed: July 2016). [ Links ]

Wells, G. A., S A. Hawkins, A R. Austin, S J. Ryder, S H. Done, R B. Green, I. Dexter, M. Dawson, and R H. Kimberlin. 2003. Studies of the transmissibility of the agent of bovine spongiform encephalopathy to pigs. J. Gen. Virol. 84: 1021-1031. [ Links ]

Received: October 2016; Accepted: April 2017

*Autor para correspondencia: danieltg_dan@yahoo.es

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons