Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Revista mexicana de física
versão impressa ISSN 0035-001X
Rev. mex. fis. vol.60 no.2 México Mar./Abr. 2014
Investigación
Calculation of the influence of the absorption grating on the diffraction efficiency in photovoltaic media in reflection geometry for nonlinear regimes
M. A. González-Trujilloa,b, A. Zuñiga-Segundoc, I. Casar-Aldreted, and J. G. Murillo-Ramíreza
a Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31109 Chihuahua, México.
b Departamento de Formación Básica, Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México D.F., 07738 México.
c Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional "Adolfo López Mateos", 07738 México, D.F., México.
d Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, México, D.F., 01000 México.
Received 3 December 2013.
Accepted 13 January 2014.
Abstract
With simultaneous phase and absorption gratings, we calculated the contribution of the absorption grating to the total diffraction efficiency in thick samples (around 0.5 cm) of iron doped lithium niobate with an applied electric field between 0 and -400 kV/cm in reflection geometry. We started by solving numerically the set of partial, non-linear, material rate differential equations. Then, we used these solutions to find numerical solutions in a self-consistent way to the beam coupling equations in two-wave mixing along sample thickness. For the given set of values of physical parameters of lithium niobate, we found that the presence of the absorption grating has a weak influence on the diffraction efficiency. It diminishes the total value of the diffraction efficiency in a small amount of around only 1%.
Keywords: Photorefractive gratings; absorption gratings; diffraction efficiency; non linear optics.
Resumen
Con rejillas simultáneas de fase y de absorción, calculamos la contribución de la rejilla de absorción a la eficiencia total de difracción en muestras gruesas (aproximadamente 0.5 cm) de niobato de litio dopado con hierro. Consideramos la geometría de reflexión, con campos aplicados entre 0 y -400 kV/cm. Primero resolvimos numéricamente el sistema de ecuaciones diferenciales parciales, no lineales del material. Estas soluciones fueron utilizadas luego para calcular el intercambio de energía en la mezcla de dos ondas. Resolvimos numéricamente las ecuaciones del acoplamiento de los haces a lo largo del grosor de la muestra. Para el valor usado del dopaje de hierro, encontramos que la contribución de la rejilla de absorción es menos de 1% del valor total de la eficiencia de difracción.
Descriptores: Rejillas fotorrefractivas; rejillas de absorción; eficiencia de difracción; óptica no lineal.
PACS: 42.65.-k; 42.70-a; 42.70.Nq
DESCARGAR ARTÍCULO EN FORMARTO PDF
Acknowledgments
A.Z.S. would like to thank A. Khomenko and R. Rangel-Rojo (CICESE) for their fruitful discussions, as well as H. Moya-Cessa for his hospitality at INAOE where these ideas were developed. We thank SIP-IPN grant 20140888.
References
1. M. Kösters, B. Sturman, P. Werheit, D. Haertle, and K. Buse, Nature Photon. Lett. 3 (2009) 509. [ Links ]
2. B. Sturman, M. Kösters, D. Haertle, C. Becher, and K. Buse, Phys. Rev. B. 80 (2009) 245319. [ Links ]
3. J. Frejlich, Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization, (Wiley-Interscience, New Jersey 2007). [ Links ]
4. P. Arora, V. M. Petrov, J. Petter, and T. Tschudi, Optics Comm. 281 (2008) 1455. [ Links ]
5. P. Arora, V. M. Petrov, J. Petter, and T. Tschudi, Optics Comm. 278 (2007)423. [ Links ]
6. V. M. Petrov, S. Lichtenberg, A.V. Chamrai, J. Petter, and T. Tschudi, Thin Solid Films 450 (2004) 178. [ Links ]
7. M. Luennemann, U. Hartwig, and K. Buse, J. Opt. Soc. Am. B., 20 (2003) 1643. [ Links ]
8. K. Buse, Appl. Phys. B. Lasers and Optics 64 (1997) 273. [ Links ]
9. L. Solymar and D. J. Cööke, Volume Holography and Volume Gratings, (Academic Press, Löndön 1981). [ Links ]
10. M. Luennemann, K. Buse, and B. Sturman, J. Appl. Phys. 94 (2003) 6274. [ Links ]
11. L. M. Cervantes, A. Zúñiga, L.F. Magana, and J.G. Murillo, Rev. Mex. Fls. 56 (2010) 323. [ Links ]
12. S. Stepanov, and C. Nuñez-Santiago, Optics Comm. 264 (2006) 105. [ Links ]
13. M. Chi, J. -P. Huignard, and P. M. Petersen, J. Opt. Soc. Am. B. 26 (2009) 1578. [ Links ]
14. F. Kahmann, J. Opt. Soc. Am. A. 10, (1993) 1562. [ Links ] M. Fally, J. Opt. Soc. Am. A. 23 (2006) 2662. [ Links ]
15. M. Fally, M. Ellabban, and I. Drevenšek-Olenik, Opt. Express. 16 (2008) 6528. [ Links ]
16. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Söskin, and V. L. Vinetskii, Ferroelectrics 23 (1979) 949. [ Links ]
17. N. V. Kukhtarev, T. Kukhtareva, and P. P. Banerjee, Proceedings of the IEEE. 87 (1999) 1857. [ Links ]
18. J. G. Murillo, L. F. Magaña, M. Carrascosa, and F. Agulló-López, J. Opt Soc. Am. B. 15 (1998) 2092. [ Links ]
19. J.G. Murillo, L.F. Magaña, M. Carrascosa, and F. Agulló-López, J. Appl. Phys. 78 (1995) 5686. [ Links ]
20. G. Cook, C. J. Finnan, and D. C. Jones, Appl. Phys. B. Lasers and Optics 68 (1999) 911. [ Links ]
21. P. Yeh, Introduction to photorefractive nonlinear optics (New York: John Wiley & Sons 1993). [ Links ]
22. I. Casar, J. G. Murillo, and L. F. Magaña, Phys. Lett A. 352 (2006) 416. [ Links ]