SciELO - Scientific Electronic Library Online

 
vol.52 número1Ciclo de vida y fecundidad de Dactylopius opuntiae (Hemiptera: Dactylopiidae) en Opuntia ficus-indica (Caryophyllales: Cactaceae)Respuesta fisiológica de taxodium mucronatum Ten. a los incrementos atmosféricos de CO2 y temperatura del último siglo índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Agrociencia

versão On-line ISSN 2521-9766versão impressa ISSN 1405-3195

Agrociencia vol.52 no.1 Texcoco Jan./Fev. 2018

 

Natural Renewable Resources

Effect of container, substrate and fertilization on Pinus greggii var. australis growth in the nursery

Sandra L. Castro-Garibay1 

Arnulfo Aldrete1  * 

Javier López-Upton1 

Víctor M. Ordáz-Chaparro2 

1Ciencias Forestales, Campus Montecillo, Colegio de Postgraduados. 56230. Montecillo, Estado de México.

2Edafología, Campus Montecillo, Colegio de Postgraduados. 56230. Montecillo, Estado de México.


Abstract

In the nursery, the container, substrate and fertilization affect morphological and physiological characteristics of the plants. The objective of this study was to evaluate growth of Pinus greggii var. australis through interaction of containers, substrates and forms of fertilization. The experimental design was completely randomized with a 2x3x2 factorial array. The plants were produced in two types of 230 mL containers: (E1) with holes at the bottom for drainage and (E2) with lateral and bottom drainage. Three mixtures of substrates were used: larger proportion of peat moss (S1), pine bark (S2) or pine sawdust (S3). Osmocote Plus® (N-P-K 15:9:12) fertilizer was applied at a dosage of 8 g L-1 in two forms: F1 (only fertilizer 8-9 months release) and F2 (mixture, half 5-6 months release and half 8-9 months release). Seven months after sowing, the following parameters were measured: height, root collar diameter, shoot dry weight (SDW) and root dry weight (RDW). Also, the sturdiness quotient (SQ), the ratio shoot dry weight/ root dry weight, and the Dickson quality index (DQI) were calculated. The factors container and substrate were significant in all of the morphological variables (p≤0.05), but fertilization was not significant. Container E1 produced taller plants with larger diameters than those produced by E2. Plants in S1 were taller and had larger root collar diameter, higher SDW, SQ and DQI. With S2 and S3, minimum suggested growth was obtained. Container design modifies plant growth. With controlled release fertilizers and pine bark and sawdust substrates, it is possible to produce good quality plants.

Keywords: Pinus greggii var. australis; morphology; plant quality; controlled release fertilizer; sawdust; pine bark

Resumen

El envase, el sustrato y la fertilización influyen en las características morfológicas y fisiológicas de las plantas en vivero. El objetivo de este estudio fue evaluar el crecimiento de Pinus greggii var. australis mediante la interacción de envases, sustratos y formas de fertilización. El diseño experimental fue completamente al azar con arreglo factorial (2x3x2). Las plantas se produjeron en dos tipos de envase de 230 mL: (E1) con aberturas en el fondo del envase para drenaje y (E2) con drenaje lateral y en el fondo. Tres mezclas de sustratos se utilizaron con proporción mayor de turba de musgo (S1), corteza de pino (S2) o aserrín de pino (S3). La fertilización fue con Osmocote Plus® (15 N-9 P-12 K), en una dosis de 8 g L-1 en dos formas de aplicación: F1 (sólo fertilizante de 8 a 9 meses de liberación) y F2 (mezcla compuesta de 4 g L-1 de fertilizante de 5 a 6 meses y 4 g L-1 de 8 a 9 meses de liberación). Después de 7 meses de la siembra, se evaluó: altura, diámetro al cuello de la raíz, peso seco aéreo (PSA) y de raíces (PSR) y se calculó el índice de esbeltez (IE), la relación peso seco aéreo/peso seco de raíces y de calidad de Dickson (ICD). Los factores envase y sustrato fueron significativos en todas las variables morfológicas (p≤0.05) y la fertilización resultó no significativa. El envase E1 produjo plantas más altas y con diámetro mayor en comparación con E2. Las plantas con S1 tuvieron altura, diámetro al cuello de la raíz, PSA, IE e ICD mayor; y con S2 y S3 se obtuvo crecimiento que cumple con los mínimos sugeridos. El diseño del envase modifica el crecimiento de las plantas; con fertilizantes de liberación controlada y sustratos a base de corteza y aserrín de pino es posible obtener planta de buena calidad.

Palabras clave: Pinus greggii var. australis; morfología; calidad de planta; fertilizante de liberación controlada; aserrín; corteza de pino

Introduction

Besides the substrate and container, cultural practices such as irrigation and fertilization influence quality and development of plants in the field (Peñuelas and Ocaña, 2000; Grossnickle, 2012). Containers impact the quantity of water and nutrients available for plants and affect morphological and physiological characteristics (Landis et al., 1990; Peñuelas and Ocaña, 2000; Luna et al., 2009).

Most forest nurseries in Mexico use peat moss as the main component of the substrates. It is an organic material extracted from swampy areas in Canada, the USA, and Europe. Thus, it must be imported to Mexico and its use increases plant production costs. Aguilera et al. (2016) determined that producing Pinus montezumae Lamb. plants in substrates based on peat moss and pine sawdust duplicates substrate cost, relative to those produced with sawdust alone. It is possible to use other materials to substitute peat moss as the principal component of substrates.

Plant nutrients in most nurseries are supplied with water-soluble fertilizers applied with irrigation. This form of fertilization has disadvantages, such as loss of nutrients through leaching and over fertilizing that can cause an imbalance between roots and the rest of the plant. To solve this problem, controlled release fertilizers (CRF) are applied. This type of fertilizer gradually transfers nutrients to the substrate and thus minimizes risk of toxicity and decreases losses from leaching (Oliet et al., 1999; Rose et al., 2004; Landis and Dumroese, 2009).

Because it is necessary to determine the advantages and disadvantages of containers, substrates and CRF, studies have been conducted with forest species, such as P. pinea L., Quercus coccifera L. (Torrente and Pemán, 2004), Cedrela odorata L. (Mateo et al., 2011), Pinus montezumae Lamb. (Hernández et al., 2014; Aguilera et al., 2016), Tectona grandis L. (Escamilla et al., 2015), P. greggii Engelm and P. oaxacana Mirov (Sánchez et al., 2016).

Pinus greggii var. australis Donahue & López is a species used in reforestation programs in Mexico. It is a species that adapts to sites where moisture is limited and contributes to recovery of degraded soils. Moreover, it has high growth rates (Vargas and Muñoz, 1988; López et al., 2004; Gómez et al., 2012).

The objective of this study was to test the efficiency of two types of containers, three substrates and one dosage of fertilizer (Osmocote®) applied in two ways on nursery production of P. greggii var. australis Donahue & López.

Materials and Methods

Study area

Plants were produced in a greenhouse in the nursery of the Graduate Program in Forest Sciences of the Colegio de Postgraduados, Montecillo, Texcoco, Mexico 19° 29’ N, 98° 54’ W, altitude 2240 m and climate type C (Wo) (w) b (1) g’, which is temperate subhumid with summer rains, annual mean precipitation 750 mm, mean annual temperature 15.5 °C and thermal oscillation 5 to 7 °C (García, 1973). Average temperature and relative humidity inside the greenhouse during the experiment were 20 °C and 68 %.

Inputs

Containers. The containers were (E1), with holes in the bottom (typical drainage), and (E2), with holes in the bottom and three 5 mm circular openings distributed around the container wall (lateral drainage). Both containers were 230 mL in volume, 6 cm upper diameter, and 12 cm tall. These polypropylene containers are known as deepots and were placed on deepot trays with 25 cavities.

Substrates. The substrate mixtures evaluated were (S1) peat moss, perlite and vermiculite, (S2) composted pine bark, peat moss and fresh pine sawdust, and (S3) fresh pine sawdust, composted pine bark and peat moss. The proportion of each component of the mixture was 3:1:1 volume.

Fertilizer. The controlled release fertilizer Osmocote Plus® (15N - 9P - 12K) was used at the dosage of 8 g L-1 in two ways, based on release time: (F1) only fertilizer released in 8 to 9 months and (F2) a mixture composed of 4 g L-1 fertilizer released in 5 to 6 months plus 4 g L-1 fertilizer released in 8 to 9 months. These were applied during preparation of substrate mixtures before filling the containers.

Established treatments

Twelve treatments from the combination of two types of containers, three substrates and two manners of controlled release fertilizer application were assessed (Table 1).

Table 1 Treatments evaluated in nursery production of P. greggii var. australis Donahue & López. 

Tratamiento Envase Sustrato Dosis de FLC g L-1
5-6 8-9
T1 E1: con aberturas en el
fondo
S1 8
T2 4 4
T3 S2 8
T4 4 4
T5 S3 8
T6 4 4
T7 E2: con aberturas laterales S1 8
T8 4 4
T9 S2 8
T10 4 4
T11 S3 8
T12 4 4

S1: peat moss, perlite, vermiculite, S2: composted pink bark, peat moss, fresh pine sawdust, and S3: fresh pine sawdust, peat moss, composted pine bark; the proportion of each mixture was 3:1:1 (v:v:v); FLC: controlled release fertilizers;† months of release.

Each treatment included five trays, or replications, with 25 plants per replication, of which only 12 plants in the middle part of the tray were assessed to avoid edge effects. The deepot trays were placed in a completely randomized design on a metal structure in the nursery greenhouse for five months. After this time, to allow the hardening process to take place, the plants were placed outdoors for the last two months of growth.

Production management

The experiment was set up on March 13, 2015, and had a duration of 7 months. The seeds used were a masal mix from 15 P. greggii var. australis Donahue & López trees of the community El Madroño, Querétaro. The seeds were disinfected with a 5 % solution of commercial chlorine for 5 min and placed in 10 % hydrogen peroxide for 5 min. They were then soaked in water at ambient temperature for 24 h. Two seeds were sown in each cavity, and when both germinated, the better seedling was selected and the other was eliminated.

Assessed variables

Substrate characteristics

Physical and chemical characterization of the substrates was done in the Soil Physics Laboratory of the Colegio de Postgraduados. Five replications per evaluation were performed. The analyses included porosity (Landis et al., 1990), pH with the potentiometer method, EC with the conductimeter method, granulometry, release and water retention curves (De Boodt et al., 1974), and C:N ratio.

Plant morphology

Seven months after sowing, root collar diameter (RCD) was measured with a digital Vernier (0.01 mm) and stem height from the base to the apical bud (1 mm). The plants were harvested and the stem was separated from the roots. The plant parts were placed in brown paper bags and dehydrated in an oven at 70 °C for 72 h. Shoot dry weight (SDW) and root dry weight (RDW) were determined on an analytical balance with precision of 0.01 g. With these data, plant quality indexes were calculated: sturdiness quotient (SQ), shoot dry weight/root dry weight ratio (SDW/RDW), and the Dickson quality index (DQI), with the following formulas:

IE=Altura (cm)DCR (mm)

Relación PSA/PSR= PSA (g)PSR (g)

ICD=Peso seco total de la planta (g)Altura (cm)DCR (mm)+PSA (g)PSR (g)

Nutrient concentration in foliage

Five dehydrated needles for the middle section from each plant of each treatment were placed in brown paper bags to quantify N, P and K. These analyses were conducted in the Plant Nutrition Laboratory of the Colegio de Postgraduados. N concentration in foliage was determined with the semi-microKjeldahl method (Bremner, 1965) with sulfuric-salicylic acid for digestion. Concentrations of P and K were determined by humid digestion of the dry matter with a mixture of perchloric and nitric acids (Alcántar and Sandoval, 1999). Extract readings were done in an induced plasma atomic emission spectroscope.

Experimental design and statistical analysis

The experimental design was completely randomized with a 2x3x2 factorial array: two types of containers, three substrates and two manners of fertilization. This is represented by the model: Yijkl=μ+A1+Bj+Ck+(AB)ij+(AC)ik+(BC)jk+(ABC)ijk+εijkl, where A is containers, B is the substrate, and C is the manner of fertilization. The analysis of variance was done with the software InfoStat® version 2008 (Di Rienzo et al., 2008).

Results and Discussion

Physical and chemical properties of the substrates

Total porosity (TP) varied from 77 % in S2 to 83 % in S3. Aeration porosity (AP) was less in S1 (19 %) and in S3 it reached the highest value (27%). In percentage of water retention porosity (WRP), S1 had the highest values (63 %, while S2 had the lowest (54 %). Pine bark (S2) and sawdust (S3) had the highest values of C:N (537 and 613) because of the high cellulose content. The substrates had acid pH: 5.3 in S1, 4.8 in S2, and 4.9 in S3. Electric conductivity varied from 0.9 to 1.7 dS m-1; S1 had the highest value and S3 the lowest (Table 2). Cabrera (1999) indicated that minimum porosity is 70 % for TP, 10 % for AP and 55 % for WRP. In this case, the substrates were above these minimum values.

Table 2 Physical and chemical characteristics of substrates used in the production of Pinus greggii var. australis Donahue & López. 

Sustrato Porosidad
total (%)
Porosidad de
aireación (%)
Porosidad de retención de
agua (%)
C:N pH CE (dS m-1)
S1 82 19 63 159 5.3 1.7
S2 77 23 54 537 4.8 1.2
S3 83 27 56 613 4.9 0.9

S1: peat moss, perlite, vermiculite, S2: pine bark, peat moss and pine sawdust, and S3: pine sawdust, peat moss and pine bark (3:1:1 vol:vol), C:N: carbon:nitrogen ratio and CE: electric conductivity.

In the substrates that contained sawdust and bark, pH varied with the proportion of each material. In other studies using mixtures of pine bark and sawdust in different proportion, Hernández et al. (2014) found pH between 4.1 and 5.2, and Sánchez et al. (2008) between 4.3 and 4.7. In both cases they used mixtures of pine bark and sawdust in different proportions. Landis et al. (1990) indicated that the pH suitable for plant production and also to reduce risk of phytopathogenic fungi is 5.5 to 6.5. Hernández et al. (2014) and Sánchez et al. (2008) also obtained higher EC than our study in substrates with a larger proportion of bark mixed with sawdust. However, according to Mathers et al. (2007), the EC interval is 0.2 to 1.0 dS m-1.

Plant morphology

The effects of container and substrate on morphology were significant (p≤0.0001). Morphology of the plants produced with F1 was similar to that of plants produced with F2, except for RDW, which was significantly higher with F2 (p=0.0011). Moreover, the interaction container x substrate was highly significant (p≤0.0001) for most of the morphological variables, except for RDW (Table 3).

Table 3 Average values for morphological characteristics and plant quality indexes of P. greggii var. australis Donahue & López after seven months in nursery. 

T E S F Altura (cm) Diámetro (mm) Peso seco (g) IE PSA/PSR ICD
Parte aérea Raíz
1 E1 Envase con
drenaje típico
S1 F1 28.1b 4.22a 3.82bcd 1.37ab 6.7de 2.8ab 0.55a
2 F2 30.0a 4.32a 4.06abc 1.37ab 7.0ef 3.0abc 0.55a
3 S2 F1 26.8bc 3.74bc 3.44de 1.23b 7.2f 2.8ab 0.47b
4 F2 26.2cd 3.91bc 3.68bcde 1.45a 6.7de 2.6a 0.55a
5 S3 F1 30.0a 4.38a 4.32a 1.43a 6.9def 3.1bc 0.57a
6 F2 30.7a 4.40a 4.17ab 1.50a 7.0ef 3.0abc 0.57a
7 E2 Envase
con aberturas
laterales
S1 F1 25.2de 4.21a 3.20e 0.90cde 6.0ab 3.6d 0.43bc
8 F2 28.2b 4.35c 3.59cde 101.00cde 6.5cd 3.6d 0.46b
9 S2 F1 22.1f 3.66c 2.55f 0.77e 6.1b 3.3cd 0.35d
10 F2 21.3f 2.58c 2.62f 0.85de 6.0ab 3.2 bcd 0.38cd
11 S3 F1 24.2e 3.92b 3.37de 1.03c 6.2bc 3.3cd 0.47b
12 F2 20.6f 4 3.65c 2.62f. 0.97cd 5.7a 2.8ab 0.43bc
E1 Todos Todos 28.7a 4.16a 3.91a 1.39a 6.9b 2.9a 0.54a
E2 Todos Todos 23.6b 3.86b 2.99b 0.92b 6.1a 3.3b 0.42b
Todos S1 Todos 27.7a 4.28a 3.67a 1.16b 6.6a 3.3b 0.50
Todos S2 Todos 26.4b 3.72c 3.62a 1.08c 6.5a 3.0a 0.44b
Todos S3 Todos 24.0c 4.09b 3.07b 1.23a 6.4a 3.0a 0.51a
Todos Todos F1 26.2a 4.02a 3.45a 1.12b 6.5a 3.2b 0.47b
Todos Todos F2 26.1a 4.04a 3.46a 1.19a 6.5a 3.0a 0.49a

Different letters in a column indicate significant differences (Tukey, p≤0.05); T: treatment, E: container, S: substrate, S1: peat moss, perlite and vermiculite, S2: pine bark, peat moss and pine sawdust, and S3: pine sawdust, peat moss and pine bark in 3:1:1 (v:v) proportion of each of the components. F: fertilization, F1: 8 g L-1 FLC released for 8 to 9 months, F2: 4 g L-1 FLC during each release period, IE: sturdiness quotient, PSA/PSR: aerial part/ roots ratio, ICD: Dickson quality index.

Containers

After seven months of growth, the plants in containers E1, compared with those in E2 containers, were taller (28.7 cm vs 23.6 cm), had larger diameter (4.15 cm vs 3.86 mm), higher SDW (3.91 vs 2.99 g) and higher RDW (1.39 vs 0.92 g) (Table 3). These differences may be due to differences in loss of water and fertilizer. Although rapid water loss in E2 containers affects growth (Landis, 2005), deformations of roots decreased, relative to that of plants in E1 containers.

Our results coincided with those of Sánchez et al. (2016), who studied P. greggii Engelm and P. oaxacana Mirov. In other species, such as Pinus radiata D. Don (Ortega et al., 2006) and Pinus pinea L., similar results have been obtained, but with Quercus coccifera L., there were no morphological differences between plants grown in the two types of container (Torrente and Pemán, 2004).

Substrates

Plants in S1 had better growth: height (27.7 cm), diameter (4.28 mm) and SDW (3.67 g). The exception was RDW (1.16 g), which was better in S3 (1.23 g) (Table 3).

Substrates with sawdust are used satisfactorily to produce forest species, such as Cedrela odorata L. (Mateo et al., 2011), Pinus pseudostrobus var. apulcensis (Lindl.) Shaw (Reyes et al., 2005) and P. montezumae Lamb. (Hernández et al. 2014). Moreover, the cost of this substrate is lower for production of P. montezumae Lamb. (Aguilera et al., 2016).

Substrates based on raw pine sawdust may negatively affect plant growth, mainly because of their content of terpenes and availability of nutrients such as N (Miller and Jones, 1995; Haase et al., 2015). However, the results of our study demonstrated that substrates S2 and S3 allowed the development of plants with adequate morphological characteristics. Prosopis laevigata Humb. & Bonpl. ex Willd. (Prieto et al., 2013) and Pinus greggii Engelm. (Maldonado et al., 2011) plants produced in pine bark-based substrates may have smaller stems and lower weight.

Fertilization

Fertilization statistically affected only RDW, which was higher with F2 than with F1 (Table 3). This result may have been because the combined method released nutrients more efficiently and improved root development. However, because of the similarities in morphology and to facilitate application, we suggest not mixing fertilizers, assuring that controlled release covers the entire period in which the plants are in the nursery (8 to 9 months) (Table 3).

Our results coincide with those of other studies conducted with Nothofagus dombeyi (Mirb.) Oerst., Nothofagus nervosa (Phil.) Krasser and Eucryphia cordifolia Cav. (Bustos et al., 2008), Tectona grandis L. (Escamilla et al., 2015) and Pinus montezumae Lamb. (Aguilera et al., 2016) using only CRF, mostly Osmocote®.

Mexal and Landis (1990) pointed out that to estimate plant performance, height and root collar diameter are the most useful traits once established in the field. They reiterated that diameter should not be smaller than 5 mm to obtain a survival rate of 75 % or more. Also, Prieto et al. (2003) stated that plant height should be 15 to 20 cm. In our study, plant height was in the range mentioned by Prieto et al. (2003), and average diameter was 4.40 mm (Table 3). This attribute, however, depends on the species.

Although there was no definite trend in morphology, associated with fertilization, the combination of E1 with S3 produced plants with better morphological variables, even though the combination with S1 was statistically not different (Table 3).

Plant quality indexes

The analyses of variance indicated that the effect of the substrate and of fertilizing were not significant for SI, but the type of container significantly (p≤0.05) affected the indexes. The results for SI oscillated between 5.7 and 7.2. In the E1 containers, plant growth was disproportionate, with long, slender stems.

According to Prieto et al. (2009), high quality plants have a sturdiness quotient (SQ) below six. The plants in E2 had optimum SI. This is possibly because the distribution of moisture could have differed between container types. Maldonado et al. (2011) observed similar results with P. greggii.

Values of the SDW/RDW ratios were higher in all the treatments than those recommended by Prieto et al. (2009), who stated that values below 2.5 indicate an adequate proportion between the root system and shoot. Differences in this index were due to type of container. In E1, the index value was 2.9, while in E2 it was 3.3. The higher value seems to be consequence of the pruning these containers cause, which increases the quantity of live roots (Sánchez et al., 2016), which are slender and lighter, but more efficient in supplying water and nutrients to plants in the field.

A higher Dickson quality index (DQI) indicates better plant quality. According to Sáenz et al. (2010), the DQI should be above 0.5 to score a high quality plant. The highest average DQI corresponded to plants produced in S3, while the lowest average value corresponded to plants produced in S2. Container type also generated significantly different values; E1 generated higher values (Table 3). Studies conducted with P. greggii Engelm. in different substrates (Maldonado et al., 2011) and chemical root pruning (Barajas et al., 2004) obtained lower DQI values than our study.

Foliage nutrient content

Concentration of N in the twelve treatments was not significantly different (p<0.05). Treatments E2 (T7 to T12) had similar values of P and K, except in S1, which had slightly lower values. In the S3 combinations (T5, T6, T11 and T12) K concentrations were higher than in the other combinations. The combination of fertilization (F2), in general, produced higher K values (Table 4).

Table 4 Percent concentration of N, P, K in P. greggii var. australis Donahue & López foliage. 

Tratamiento Sustrato 5 a 6 meses de liberación 8 a 9 meses de liberación N Concentración P K
Dosis (g L-1)
1 S1 8 0.96a 0.20abc 0.35c
2 S1 4 4 1.14a 0.17de 0.29d
3 S2 8 0.88a 0.17e 0.27d
4 S2 4 4 0.86a 0.18cde 0.33c
5 S3 8 8 1.00a 0.19bcd 0.33c
6 S3 4 4 0.93a 0.18cde 0.34c
7 S1 8 0.91a 0.18cde 0.34c
8 S1 4 4 1.12a 0.21ab 0.40b
9 S2 8 0.96a 0.21 a 0.42ab
10 S2 4 4 0.85a 0.20ab 0.41ab
11 S3 8 0.96a 0.20abc 0.42ab
12 S3 4 4 0.93a 0.21ab 0.44a

S1: peat moss, perlite and vermiculite, S2: pine bark, peat moss and pine sawdust, and S3: pine sawdust, peat moss and pine bark in de 3:1:1 (v:v) proportion. Different letters in a column indicate significant differences (Tukey, p≤0.05).

The highest percentages of N were found with treatments S1 (T2 and T8) and the lowest with S2 (T4 and T10), in both cases with the F2 fertilization scheme. Concentrations of P were similar in all of the treatments. The highest values of K were found in the S3 treatments (Table 4). Nutrient contents found in P. greggii var. australis Donahue & López of our study varied 0.85 to 1.14 % (N), 0.17 to 21 % (P) and 0.27 tp 0.42 % (K) (Table 4). Aguilera et al. (2016) obtained similar values in P. montezumae Lamb. with the same dosages of fertilizer Osmocote Plus®.

Miller and Jones (1995) mention that sawdust can negatively affect nutrient availability, especially that of N. However, the results of this study showed that P. greggii var. australis Donahue & López produced in S3 were not deficient in foliage N concentration.

Conclusions

Container design affected morphological characteristics. Plants grown in E1containers were larger than those in E2 container. Plants grown in fresh pine sawdust based and composted pine bark substrates did not have nutrient deficiencies. The substrate with the highest proportion of sawdust promoted greater root development, which is advantageous for establishment in the field. Fertilization did not have an effect on plant growth or foliage nutrient concentration.

Literatura citada

Aguilera R., M., A. Aldrete, T. Martínez T. y V. M. Ordaz C. 2016. Producción de Pinus montezumae Lamb. con diferentes sustratos y fertilizantes de liberación controlada. Agrociencia 50: 107-118. [ Links ]

Alcántar G., G. y M. Sandoval V. 1999. Manual de análisis químico de tejido vegetal. Sociedad Mexicana de la Ciencia del Suelo. Chapingo, México. 150 p. [ Links ]

Barajas R., J. E., A. Aldrete, J. J. Vargas H. y J. López U. 2004. La poda química en vivero incrementa la densidad de raíces en árboles jóvenes de Pinus greggii. Agrociencia 38: 545-553. [ Links ]

Bremner, J. M. 1965. Total Nitrogen. In: C. A Black (ed.) Methods of soil analysis. Part 2: Chemical and microbial properties. Number 9 in series Agronomy. American Society of Agronomy, Inc. Publiser, Madison, USA. pp: 1049-1178. [ Links ]

Bustos, F., M. E. González, P. Donoso, V. Gerding, C. Donoso, y B. Escobar. 2008. Efecto de distintas dosis de fertilización de liberación controlada (Osmocote®) en el desarrollo de plantas coigüe, raulí y ulmo. Bosques 29:155-161. [ Links ]

Cabrera I., R. 1999. Propiedades, uso y manejo de sustratos de cultivo para la producción de plantas en maceta. Rev. Chapingo Ser. Hortic. 5: 5-11. [ Links ]

De Boodt, M., O. Verdonck and I. Cappaert. 1974. Method for measuring the water release curve of organic substrates. Acta Hortic. 37: 2054-2062. [ Links ]

Di Rienzo, J.A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada y C. W. Robledo. 2008. InfoStat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. [ Links ]

Escamilla H., N., J. J. Obrador O, E. Carrillo A. y D. J. Palma L. 2015. Uso de fertilizantes de liberación controlada en plantas de teca (Tectona grandis), en la etapa de vivero. Rev. Fitotec. Mex. 38: 329-333. [ Links ]

García, E. 1973. Modificaciones al Sistema de Clasificación Climática de Köppen. 2ª Ed. Instituto de Geografía. UNAM. México, D.F. pp: 39-40. [ Links ]

Gómez R., M., J. C. Soto C., J. A. Blanco G., C. Saénz R., J. Villegas y R. Lindig C. 2012. Estudio de especies de pino para restauración de sitios degradados. Agrociencia 46: 795-807. [ Links ]

Grossnickle, S. C. 2012. Why seedlings survive: influence of plant attributes. New Forests 43:711-738. [ Links ]

Haase, D. L., R. K. Dumroese, K. M. Wilkinson and T. D. Landis. 2015. Tropical nursery concepts and practices. In: Tropical Forestry Handbook. USDA. pp: 1 -30. [ Links ]

Hernández Z., L., A. Aldrete , V. M. Ordaz C., J. López U. y M. A. López L. 2014. Crecimiento de Pinus montezumae Lamb. en vivero influenciado por diferentes mezclas de sustratos. Agrociencia 48: 627-637. [ Links ]

Landis, T. D. 2005. Sideslit or Airslit Containers. In: Dumroese, R. K., Landis, T. D. and Watson, R. (eds). Forest Nursery Notes. USDA, Forest Service. Washington, D.C. Summer. pp: 17-19. [ Links ]

Landis, T. D. and R. K. Dumroese. 2009. Using polymer coated controlled release fertilizers in the nursery and after outplanting. In: Dumroese, R. K., Landis, T. D., Watson, R. and Hutchinson, L. (eds). Forest Nursery Notes. USDA, Forest Service. Washington, D.C. Winter. pp: 5-12. [ Links ]

Landis, T. D., R. W. Tinus, S. E. Mc Donald and J. P. Barnett. 1990. Containers and Growing Media, Vol. 2. The Container Tree Nursery Manual. Agricultural. Handbook 674. USDA, Forest Service. Washington, DC. USA. 88 p. [ Links ]

López U., J., C. Ramírez H., O. Plascencia E. y J. Jasso M. 2004. Variación en crecimiento de diferentes poblaciones de las dos variedades de Pinus greggii. Agrociencia 38: 457-464. [ Links ]

Luna, T., T. D. Landis , and R. K. Dumroese. 2009. Containers. In Dumroese, R. K., Luna, T. and T. D. Landis (eds.). Nursery manual for native plants: volume 1, a guide for tribal nurseries. Agriculture Handbook 730.: USDA, Forest Service. Washington, DC. pp: 95 - 111. [ Links ]

Maldonado B., K. R., A. Aldrete, J. López U., H. Vaquera H. y V. M. Cetina A. 2011. Producción de Pinus greggii Engelm. en mezcla de sustratos con hidrogel y riego, en vivero. Agrociencia 45: 389-393. [ Links ]

Mateo S., J. J., R. Bonifacio V., S. R. Pérez R., L. Mohedano C. y J. Capulín G. 2011. Producción de Cedrela odorata L. en sustrato a base de aserrín crudo en sistema tecnificado en Técpan de Galeana, Guerrero, México. Ra Ximhai 7: 123-132. [ Links ]

Mathers, H. M., S. B. Lowe, C. Scagel, D. K. Struve, and L. T. Case. 2007. Abiotic factors influencing root growth of woody nursery plants in containers. HortTechnology 17: 151:162. [ Links ]

Mexal, J. G. andT. D. Landis. 1990. Target seedlings concepts: Height and diameter. In: Rose, R., S.J. Campbell and T.D. Landis (eds.). Target Seedlings Symposium: Proceedings, combined meeting of the western forest nursery associations. General technical report. RM-200. USDA, Forest Service. Ft. Collins. CO. pp: 17-36. [ Links ]

Miller, J. H. and N. Jones. 1995. Organic and compost-based growing media for tree seedling nurseries. World Bank Tech. Paper No 264, Forestry Series. The World Bank, Washington, DC. 75 p. [ Links ]

Oliet, J., M. L. Segura, F. Martín D., E. Blanco, R. Serrada, M. López A. y F. Artero. 1999. Los fertilizantes de liberación controlada lenta aplicados a la producción de planta forestal de vivero. Efecto de dosis y formulaciones sobre la calidad de Pinus halepensis Mill. Invest. Agrar. Sist. Rec. Forest. 8: 208 - 228. [ Links ]

Ortega, U., J. Majada, A. Mena P., J. Sánchez Z., N. Rodríguez I., K. Txarterina, J. Azpitarte. y M. Duñabeitia. 2006. Field performance of Pinus radiata D. Don produced in nursery with different types of containers. New Forests 31: 97-112. [ Links ]

Peñuelas R., J. L. y L. Ocaña B. 2000. Cultivos de Planta Forestal En Contenedor. Principios y Fundamentos. Mundi Prensa. Barcelona, España. 199 p. [ Links ]

Prieto R., J. A., J. L. García R., J. M. Mejía B., S. Huchín A. y J. L. Aguilar V. 2009. Producción de Planta del Género Pinus en Vivero en Clima Templado Frío. Publicación especial No. 28. Campo Experimental Valle del Guadiana. Centro de Investigación Regional Norte Centro. INIFAP. 48 p. Durango, Dgo. México. [ Links ]

Prieto R., J. A., G. Vera C. y E. Merlín B. 2003. Factores que influyen en la calidad de brinzales y criterios para su evaluación en vivero. Folleto Técnico 12. Campo Experimental Valle de Guadiana- INIFAP-SAGARPA. Durango, Dgo. México. 24 p. [ Links ]

Prieto R., J. A., S. Rosales M., J. A. Sigala R., R. E. Madrid A. y J. M. Mejía B. 2013. Producción de Prosopis laevigata (Humb. et Bonpl. ex Willd.) con diferentes mezclas de sustratos. Rev. Mex. Cienc. For. 4: 50-57. [ Links ]

Reyes R., J., A. Aldrete, V. M. Cetina A. y J. López U. 2005. Producción de plántulas de Pinus pseudostrobus var. apulcensis en sustratos a base de aserrín. Rev. Chapingo Ser. Cienc. For. Amb. 11: 105-110. [ Links ]

Rose, R., D. L. Haase. y E. Arellano. 2004 Fertilizantes de entrega controlada: potencial para mejorar la productividad de la reforestación. Bosque 25: 89-100. [ Links ]

Sáenz R., J. T., F. J. Villaseñor R., H. J. Muñoz F., A. Rueda S. y J. A. Prieto R. 2010. Calidad de Planta en Viveros Forestales de Clima Templado en Michoacán. Folleto Técnico Núm. 17. SAGARPA-INIFAP-CIRPAC-Campo Experimental Uruapan. Uruapan, Michoacán. 48 p. [ Links ]

Sánchez C., T., A. Aldrete, V. M. Cetina A. y J. López U. 2008. Caracterización de medios de crecimiento compuestos por corteza de pino y aserrín. Madera y Bosques 14: 41-49. [ Links ]

Sánchez A., H., A. Aldrete, J. J. Vargas H. y V. M. Ordaz C. 2016. Influencia del tipo y color de envase en el desarrollo de plantas de pino en vivero. Agrociencia 50: 481-492. [ Links ]

Torrente S., I. y J. Pemán G. 2004. Influencia de los contenedores abiertos lateralmente en la morfología aérea y radicular en plántulas de Pinus pinea y Quercus coccifera. Cuadernos de la Sociedad Española de Ciencias Forestales 17: 239-243. [ Links ]

Vargas H., J. J. y A. Muñoz O. 1988. Resistencia a sequía: II. Crecimiento y supervivencia en plántulas de cuatro especies de Pinus. Agrociencia 72: 197-208. [ Links ]

Received: July 2016; Accepted: November 2016

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons