SciELO - Scientific Electronic Library Online

 
vol.50 número4Extracción asistida por ultrasonido de compuestos fenólicos de semillas de chia (Salvia hispanica L.) y su actividad antioxidante índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Agrociencia

versão On-line ISSN 2521-9766versão impressa ISSN 1405-3195

Agrociencia vol.50 no.4 Texcoco Mai./Jun. 2016

 

Food Science

Sanitary quality of foods processed with red agave worm (Comadia redtembacheri H.) in San Juan Teotihuacán, Estado de México, México

Beverly Ramos-Rostro1 

Julieta Ramos-Elorduy Blásquez2 

José M. Pino-Moreno2 

Felipe C. Viesca-González1 

José J. Martínez-Maya3 

Luz del C. Sierra-Gómez Pedroso3 

Baciliza Quintero-Salazar1  * 

1 Centro de Investigación y Estudios Turísticos, Facultad de Turismo y Gastronomía, Universidad Autónoma del Estado de México. 50100. Cerro de Coatepec s/n, Ciudad Universitaria, Toluca, México.

2 Instituto de Biología, Departamento de Zoología, Laboratorio de Entomofagia, Apdo. Postal 70-153, 04510. Ciudad de México, México.

3 Departamento de Medicina Preventiva y Salud Pública. Facultad de Medicina Veterinaria y Zootecnia. Universidad Nacional Autónoma de México. 04510. Avenida Universidad 3000. Ciudad de México. México.


Abstract:

The tendency for regional gastronomy to be part of the tourist experience is ever growing. The red maguey or agave worm (Comadia redtembacheri Hammershmidt, 1848 Lepidoptera Cossidae) is an edible insect collected in some states of Mexico and is used to make gastronomic specialities sold in touristic and gastronomic corridors. Therefore, the microbiological quality of this type of food must be known. Indicator microorganisms of hygienic quality of foods such as aerobic mesophilic bacteria, fungi, yeasts, total and fecal coliforms and Salmonella spp. were quantified from samples of dishes prepared with red maguey worms. These samples were collected from 18 food and beverage establishments in the tourist area of San Juan Teotihuacan, Estado de Mexico, during September and November 2010. This study was conducted based on the Mexican official standards. The experimental design used was paired or related samples and the Wilcoxon signed-ranks test was also applied, taking as pairs the September and November determinations in a same establishment. Mesophilic Aerobic bacteria count was less than the maximum limit set by the Official Mexican Standard NOM-093-SSA1-1994. All samples were free of total and fecal coliforms, regardless of the time of sampling. The maximum values of mesophilic aerobic bacteria, moulds and yeasts were reported in November. Between the two periods, no significant difference (p>0.05) was found in the counts of the indicator organisms. Salmonella spp. was not detected in samples. The dishes prepared with red agave worm sold in the tourist area of San Juan Teotihuacan have an acceptable microbiological quality.

Key words: Anthropoentomophagy; edible insects; red agave worm; Comadia redtembacheri; microbiological quality; sanitary quality

Resumen:

La tendencia de que la gastronomía y los alimentos regionales sean parte de las experiencias turísticas es creciente. El gusano rojo de maguey o agave (Comadia redtembacheri Hammershmidt, 1848 Lepidóptera Cossidae) es un insecto comestible recolectado en algunas entidades de México y se emplea para elaborar especialidades gastronómicas comercializadas en corredores turísticos y gastronómicos por lo que la calidad sanitaria de este tipo de alimentos debe conocerse. Los microorganismos indicadores de calidad microbiológica, como mesófilos aerobios, hongos y levaduras, coliformes fecales y totales, así como Salmonella spp. se cuantificaron en muestras de platillos elaborados con gusano rojo de maguey de 18 establecimientos de alimentos y bebidas de la zona turística de San Juan Teotihuacán, Estado de México, en las temporadas de septiembre y noviembre de 2010. El estudio se realizó con base en las normas ofìciales mexicanas. El diseño experimental fue de muestras apareadas o relacionadas y se aplicó una prueba de rangos con signo de Wilcoxon, tomando como pares las determinaciones de septiembre y de noviembre en un mismo establecimiento. El recuento de mesófilos aerobios fue menor que el límite máximo señalado por la Norma Oficial Mexicana NOM-093-SSA1-1994. Todas las muestras estuvieron libres de coliformes totales y fecales, independientemente de la época. Los valores máximos de mesófilos aerobios, hongos y levaduras se presentaron en noviembre. Entre las dos épocas no hubo diferencia significativa (p> 0.05) en los recuentos de microorganismos indicadores. En ninguna muestra se identificó Salmonella spp. Los platillos elaborados con gusano rojo de maguey comercializados en la zona turística de San Juan Teotihuacan tienen calidad microbiológica aceptable.

Palabras clave: Antropoentomofagia; insectos comestibles; gusano rojo de agave; Comadia redtembacheri; calidad microbiológica; calidad higiénica

Introduction

Gastronomy is important because it creates links between people and the places they visit; thus, besides being a cultural manifestation, it can also be a tourist resource (Ricolfe et al., 2008). Although there is interest from tourists to consume traditional cuisine representative of the attended places, sometimes this local food consumption is avoided because it is unfamiliar and hygiene during its processing seems inadequate (Amuquandoh, 2011).

In some developing countries, it is common to prepare food with poor hygiene and sanitation, so that tourists may suffer gastrointestinal disorders, such as traveler's diarrhea. In this regard, the Centers of Disease Control and Prevention reported in 2006 that traveler's diarrhea affects every year between 20 and 50 % of the international travelers, and that the higher-risk destinations are developing countries from Latin America, Africa, Middle East and Asia (CDC, 2006).

Some foodborne diseases (ETA's) are: salmonellosis, shigellosis and listeriosis. In the literature there are documents about the presence of pathogen microorganisms in both, the staff and the foods sold in tourist destinations. In this regard, a study carried out in Nairobi, Kenya, Onyango et al. (2009) reported cases of infection by pathogenic Escherichia coli in food handlers working in luxury hotels. This shows the importance of assuring the hygienic quality of food, as it can help strengthen or impair the image of the touristic destiny.

Edible insects are ingredients collected for food in some states of Mexico such as Chiapas (Ramos-Elorduy and Pino, 2002), Oaxaca (Ramos-Elorduy et al., 1997), Hidalgo (Ramos-Elorduy et al., 2002) and the Estado de Mexico (Miranda et al., 2011; Viesca et al., 2012). In the later, the archaeological and tourist area of San Juan Teotihuacan is a highlight, where "escamoles" (Liometopum apiculatum Mayr, 1870 Hymenoptera Formicidae.), white worms (Aegiale heperiaris, K. Walker, 1856 Lepidoptera: Megathymidae) of agave (Agave salmiana Otto ex Salm-Dick) and red agave worms are used in the production of local cuisine specialties (Miranda et al., 2011) for domestic and foreign tourists.

Red maguey or agave worms are the larva of a moth Comadia redtembacheri Hammershmidt, 1848 Lepidoptera Cossidae. Its Nahuatl name is "Chichitlicocuilin" and it is commonly known as "chinicuil" or "michicuil"; inhabits the "pineapple" (core of the Agave, or "mezontete") of the maguey (Agave spp.). Its length is of about 3-4 cm (Granados, 1993). It is used in the Mexican traditional distilled spirit industry, to flavor it (Ramos-Elorduy et al., 2006). This insect is in great demand throughout the year in the tourist area of San Juan Teotihuacan. It is more abundant in July, August and September and it is commonly offered on markets and restaurants in the area, prepared in butter sauce, roasted, or fried as a snack (Miranda et al., 2011).

In the scientific literature there is significant research on the economic and cultural aspects, taxonomic, chemical and nutritional composition of various insects, including red agave worm (Ramos-Elorduy et al., 1984; Ramos-Elorduy et al., 1988); still, reports on the microbiological quality of edible insects are scarce. Arango et al. (2004) carried out a microbiological study on Hermetia illuscens L.; whereas larvae flour (Diptera: Stratiomyiidae) in Colombia. Klunder et al. (2012) did it in flour larvae (Tenebrio molitor Linnaeus, 1758) and crickets (Acheta domesticus Linnaeus, 1758).

Although there is information on the nutritional composition of red maguey worm, its hygienic quality has not been evaluated nor in prepared dishes with this worm, such as those sold in some areas with national and international tourism. The aim of this study was to determine the hygienic quality of some dishes prepared with red agave worm in local food and drink establishments in the tourist area of San Juan Teotihuacan, Estado de Mexico, during the September and November seasons.

Materials and Methods

Sample collection

Thirty six samples of gastronomical specialities prepared with red maguey worms were bought in 18 restaurants near the tourist site of San Juan Teotihuacan, during two seasons in 2010 (one sample per establishment per season). Restaurants which prepared dishes with red agave worm were selected. The first analyzed season was September (18 samples), when abundant insects are available and marketed fresh; the second season was November (18 samples), when the restaurateurs use frozen insects.

Samples were aseptically placed in Ziploc® type plastic bags in a cooler on an ice bath, and transported, during 3 h, to the Laboratory of the Department of Preventive Medicine and Public Health, Faculty of Veterinary Medicine and Animal Science, the National Autonomous University of Mexico. Samples were stored at 4±2 °C 24 h or less, according to the Mexican Official Standard NOM-109-SSA1-1994 (Goods and Services. Procedures for taking, handling and transporting food samples for microbiological analysis). All analyzes were performed by duplicate.

Sample preparation

Samples were prepared based on the Mexican Official Standards NOM-110-SSA1-1994 (Goods and Services. Preparation and dilution of food samples for microbiological analysis) and NOM-065-SSA1-1993 (Sanitary specifications of culture media.Generalities). Ten grams of each dish sample were alloted into portions of 1 cm long. Next, 90 mL of a 0.5 M sterilized phosphate buffer solution pH 7.2 were added and maintained for 60 s in a homogenizer (Stomacher 400, West Sussex, UK), from where dilutions were obtained.

Microbiologic analysis

Mesophilic aerobic bacteriacount

The total mesophilic aerobic bacteria count was performed following the Official Mexican Standard NOM-092-SSA1-1994 (Goods and Services. Methods for aerobic bacteria in plaque account). One mL of the decimal dilutions series was deposited in a 90 mm diameter sterile Petri dish. To each plate 15 mL of sterilized agar for standard methods (Difco, Detroit, MI, USA) were added, at 45 °C. Next, the medium and inoculum were mixed. Plates were left to solidified and then placed in an incubator (Felisa, Model I33 Mexico), at 35±2 °C for 48 h. Grown colonies were quantified on a colony counter (CCD-20; RYCSA, México); the results were assessed as colony-forming units per gram (CFU g-1).

Moulds and yeasts

Yeast and moulds count was performed according to the Official Mexican Standard NOM-111-SSA1-1994 (Goods and Services. Methods for fungi and yeasts in foods account). From the series of decimal dilutions, 1 mL of each dilution was deposited in 90 mm diameter sterile Petri dishes. To each plate, 15 mL of potato dextrose agar (Difco, Detroit, MI, USA) acidified with 10 % tartaric acid (JT Baker, México) were added. The medium and inoculum were then mixed. Solidified agar plates were placed in an incubator (Felisa, Model 133, Mexico) at 25 ±2 °C. After 72 h of incubation, the first CFU g-1 count was performed, the second at 96 h.

Total and fecal coliforms

This analysis was performed based on the Official Mexican Standard NOM-113-SSA1-1994 (Goods and Services. Method for total coliforms plaque count) and the Mexican Official Standard NOM-112-SSA1-1994 (Goods and services. Determination of coliform bacteria. Most probable number technique). One milliliter of inoculum sample, homogenized in diluent solution, was placed in 9 mL tubes containing sodium sulfate lauryl broth (Difco, Detroit, MI, USA) and incubated at 35 ±2 °C, between 24 and 48 h. Samples of tubes in which gas accumulated in the Durham bells, were re-sowed in Escherichia coli Migula 1895 broth (Difco, Detroit, MI, USA), and incubated at 44.5±2 °C in water bath, for 24 to 48 h.

Detection of Salmonella spp.

To detect Salmonella spp. the method described by the Mexican Official Standard NOM-114-SSA1-1994 (Goods and services. Method for Salmonella determination in food) was followed. Two hundred and twenty five mL of lactose broth (Difco, Detroit, MI, USA) were added, as broth of pre-enrichment, to the samples (25 g), in sterile conditions. These were homogenized for 1 min and then incubated at 35 ±2 °C for 24 h. One mL samples of homogenized liquid were deposited in tubes containing 10 mL of tetrathionate broth (Difco, Detroit, MI, USA) or 10 mL of selenite-cystine broth (Difco, Detroit, MI, USA). The tubes were incubated at 35 ±2 °C for 24 h. After the enrichment, each sample was sowed on plates with bismuth - sulfite agar, Hektoe enteric agar and XLD agar (Difco, Detroit, MI, USA).The samples were then incubated at 37±2 °C for 24 h when the colonies were surveyed. The suspected colonies underwent the LIA (Lysine iron agar) and TSI (Triple sugar iron) biochemical tests (Difco, Detroit, MI, USA).

Data analysis

Yeast, fungi and mesophilic colony-forming units per gram (CFU g-1) counts were analyzed with descriptive statistics and the Wilcoxon signed-ranks test. The statistical analyses were performed with the Minitab version 16.1.0 statistical software; pairs were the determinations from September and November in each establishment.

Results and Discussion

Various insects have high protein content of high biological quality, minerals (Ramos-Elorduy et al., 1998), fiber, vitamins (Ramos-Elorduy and Pino, 2001) as well as their caloric intake can also be high (Ramos-Elorduy and Pino, 1990); their contribution to biodiversity and ecological advantages are important. Therefore, the practice of entomophagy or anthropoentomophagy (consumption of insects or their derivatives by human) (Costa-Neto and Ramos-Elorduy, 2006) may be a factor to promote food security and environmental sustainability in the world (Belluco et al., 2013; Van Huis et al., 2013). In addition, the consumption of insects is increasing among tourists in the world, especially those interested in ecotourism, which includes experiences that reflect the traditional way of life of the visited communities, including recollection and food preparation (Yen et al., 2013).

According to the Mexican National Institute of Anthropology and History (INAH) in 2011 the archaeological site in Teotihuacan, Mexico, received 2 million 234 439 visitors; 77 % of them were Mexican nationals (INHA, 2012). An unknown number of them consumed local cuisine, which includes culinary specialties prepared with local ingredients, such as edible insects, the red maguey worm among them.

Belluco et al. (2013) suggest that insects can accommodate different pathogenic bacteria and consider that research has been limited to those insects classified as agricultural or livestock pests, such as the darkling beetle (Zoophobas morio) and flies. Klunder et al. (2012) carried out microbiological analysis in flour larvae (Tenebrio molitor, Linnaeus, 1758) and crickets (Acheta domesticus, Linnaeus, 1758) fresh, boiled, grilled and then stored (refrigerated and room temperature). In fresh insects, enterobacteria and spore forming bacteria were isolated, which were generally from non-pathogenic species. These authors point out that high temperatures reduced the microbial load, mainly from the Enterobacteriaceae family. They also detected spores, which probably came from the ground and were not fully eliminatedeven after boiling, so they suggest that insects should be carefully handled.

Only one study on the microbiological quality of the "Cuchamá" insect (Paradirphia fumosa R. Felder & Rogenhofer, 1874) prepared in flour, which is used for culinary purposes in the Mixteca of Puebla, Mexico (Navarro-Cruz et al., 2011), was found in the literature reviewed. That product showed levels of mesophilic aerobic bacteria, fungi, yeasts and total coliforms of less than 10 CFU g-1, which was below the limits of the NOM-147-SSA-1996.

The restaurants nearby to the archaeological site of Teotihuacan prepare red maguey worms: 1) fried in butter or oil; 2) cooked with garlic (Allium sativum L. 1753), onion (Allium cepa Alef.), serrano pepers (Capsicum annuum L. 1753), parsley (Petroselinum sativum (Mill) Fuss), epazote (Chenopodium ambrosioides L.) and coriander (Coriandrum sativum L.); 3) roasts and 4) in sauce with tomatoes (Physalis ixocarpa Brot. ex Hornem; 1819), onion, garlic, green serrano peppers and coriander. They are usually offered with refried beans (Phaseolus vulgaris L. 1753), guacamole, nopal (Opuntia spp.) and tortillas (Table 1).

Table 1 Characteristics of foods prepared with red agave worm (Comadia redtembacheri H.) in the turistic area of San Juan Teotihuacan, Mexico. 

The count of indicator organisms in the analyzed samples was based on the Mexican Official Standard NOM-093-SSA1-1994 (Goods and services. Hygiene and sanitation practices in the preparation of food offered in fixed establishments). Although, it is currently dismissed, it was used because the updated version (Mexican Official Standard NOM-251-SSA1-2009; Hygienic practice for food processing, beverages or supplements) does not set a maximum permissible of indicator microorganisms limit in food.

The amount of aerobic mesophilic of the 18 samples from the first assessment was 30-27 000 CFU g-1, and in the second 15-71 000 CFU g-1. Aerobic mesophilic values did not exceed the maximum limit (150 000 CFU g-1) stated in the Mexican Official Standard NOM-093-SSA1-1994.

The number of mesophilic aerobic bacteria could be influenced by the way the food is prepared. Thus, in the first assessment, some samples of fried red worms in oil had a lower microbial count (30200 CFU g-1) that those fried in butter (330 CFU g-1). This could be because the temperatures with the oil are greater than in butter. Roasted red worms, without further ingredients, presented between 480 and 2800 CFU g-1. In this regard, proper food roast depends on the time required for the procedure and the temperatures inside it. In samples prepared with garlic, onion, coriander, epazote, serrano peppers and tomato, the presence of mesophilic aerobic bacteria varied between 150 and 1300 CFU g-1. The maguey worms fried in oil were expected to have a lower microbial count than those prepared with other ingredients, which could contaminate the samples, but this was not the case. This might be the result of a combination of factors such as the method, time and cooking temperature, the added ingredients and quality of raw materials used in their preparation.

The samples from establishment 4, from the first sampling, were fresh and raw red worms, and in the second were frozen and raw; in those samples the aerobic mesophilic number was of 27 000 and 800 CFU g-1 in the first and second sampling, respectively. This confirmed that freezing, although not a preservation method intended to destroy microorganisms, does decreased their number. In contrast, samples prepared with frozen red worms did not show lower microbial counts. This might be the result of poor hygiene during food preparation.

During November, mesophilic aerobic bacteria were more abundant. This could be due to inadequate freezing of the worms. The great variability of the results in November may be because there is no standardized methodology for freezing worms used by all restaurateurs (Table 2). In this regard, owners lack techniques, infrastructure and appropriate technology to adequately freeze and store the worms and other goods. The red maguey worms, after being collected, are washed with water to remove soil residues, and then frozen and stored in home freezers. Unlike the freezers used by large super markets and food and beverage franchises, these lack control and strict temperature monitoring.

Table 2 Descriptive statistics of the mesophilic aerobic bacteria count (CFU g-1) in foods prepared with red agave worm (Comadia redtembacheri H.) sold in the touristic area of San Juan Teotihuacan, Mexico. 

The Wilcoxon signed-ranks test showed no significant statistical difference (p = 0.407) in the presence of aerobic mesophilic between both sampling periods, regardless of the difference between thesamples average. This could be due to the presence of outliers caused by exceptional unidentified situation.

All samples from both seasons were free of total and fecal coliforms. This result shows that the recollection, marketing and product preparation of the food and other raw materials are suitable.

Arango et al. (2004) evaluated the levels of indicator organisms and pathogens in flour of larvae H. illuscens L. (Diptera: Stratiomyiidae) following the Colombian normativity (Colombian ICA Standard No. Dip-30-100-003). They concluded that the flour had acceptable microbiological quality, because the mesophilic aerobic and Clostridium spp. were within the ranges allowed by the norm.

The assessment of yeast and fungi showed higher statistical mean and variability in November than in September (Table 3). The minimum yeast count was 10 in September and November.

Table 3 Descriptive statistics for the number of yeasts (CFU g-1) and mould in foods made with red agave worm (Comadia redtembacheri H.) sold in the touristic area of San Juan Teotihuacan, Mexico. 

The standard deviation was also higher in the samples obtained in November. The average and maximum count of moulds was higher in the November samples. This could also be associated with the time and storage conditions of the frozen red maguey worms. In this sense, moulds and yeasts can grow in frozen food when stored in inadequate conditions. However, according Orberá (2004), the group yeasts that adversely associate with food is low: about 25 % of the identified species, of which only a low percentage might be harmful.

The Wilcoxon signed-ranks test showed no significant statistical difference in the moulds counts (p = 0.180) and yeast (p = 0.225), between the two sampled periods (Table 3).

Detection of Salmonella spp.

The results of Salmonella spp. microbiological analysis in samples of 18 dishes showed no presence of these microorganisms in both sampling periods. This indicates that the analyzed food was hygienically prepared and that the cooking techniques used in the touristic area in San Juan Teotihuacan, allow an acceptable microbiological quality.

The absence of Salmonella spp. and E. coli in H. illuscens L. (Diptera: Stratiomyiidae) larvae flour was shown by Arango et al. (2004). They indicate that the cuticle of insects body possesses antibacterial substances, and therefore the growth of pathogenic microorganisms is limited. This may contribute to the low levels of indicator microorganisms and inhibit the presence of Salmonella in the analyzed samples.

Conclusions

This study shows that dishes prepared with red agave worm (Comadia redtembacheri H.) sold in the tourist site of San Juan Teotihuacan have an adequate hygienic quality.

The application of appropriate practices during the entire chain of production, collection, preservation, preparation and marketing of the red maguey worm should be maintained or improved to maintain the microbiological quality of the culinary preparations that have brought fame to San Juan Teotihuacan.

Taking care of the microbiological quality of the food offered to the public could help to maintain or increase gastronomic tourism activities in the area.

Literatura citada

Amuquandoh, F. E. 2011. International tourists' concerns about traditional foods in Ghana. J. Hosp. Tour. Manage. 18: 1-9. [ Links ]

Arango, G. G. P., R. R. A.,Vergara, and V. H. Mejía. 2004. Análisis composicional, microbiológico y digestibilidad de la proteína de harina de larvas de Hermetia illuscens L (Diptera:Stratiomyiidae) en Angelópolis-Antioquía, Colombia. Rev. Fac. Nacl. Agron. Medellín 57: sin número (Consulta: agosto de 2014). [ Links ]

Belluco, S., C. Losasso, M. Maggiolett, C. C. Alonzi, M. G. Paoletti, and A. Ricc. 2013. Edible insects in a food safety and nutritional perspective: a critical review. Comp. Rev. Food Sci. Food Saf. 12: 296-313. [ Links ]

Costa, N. E. M y Ramos-Elorduy J. 2006. Los insectos comestibles de Brasil: etnicidad, diversidad e importancia en la alimentación. Bol. Soc. Entomol. Aragonesa 1: 423-442. [ Links ]

CDC (Centers of Disease Control and Prevention). 2006. Travelers' Diarrhea. http://www.cdc.gov/ncidod/dbmd/diseaseinfo/travelersdiarrhea_g.htm . (Consulta: agosto de 2014). [ Links ]

Granados D. S. 1993. Los Agaves en México. Universidad Autónoma Chapingo. Chapingo, México. 252 p. [ Links ]

INAH. (Instituto Nacional de Antropología e Historia). 2012. Supera turismo cultural 18 millones de visitantes. http://www.inah.gob.mx/boletines/5-actividades-culturales/5532-supera-turismo-cultural-18-millones-de-visitantes (Consulta: agosto de 2014). [ Links ]

Klunder, H. C., J. Wolkers-Rooijackers, J. M. Korpela, and M. Nout 2012. Microbiological aspects of processing and storage of edible insects. Food Control 26: 628-631. [ Links ]

Miranda, R. G., B. Quintero-Salazar, R. B. Ramos, y H. A. Olguín-Arredondo. 2011. La recolección de insectos con fines alimenticios en la zona turística de Otumba y Teotihuacán, Estado de México. PASOS: Rev. Turismo Patrimonio Cultural 9: 81-100. [ Links ]

Navarro-Cruz, A. R., S. R. Ávila-Sosa, P. Aguilar-Alonso, O. Vera-López, y R. Dávila-Márquez. 2011. Estudio de la composición nutricional de cuchama (Paradirphia fumosa) de la mixteca poblana. Cienc. Mar XV: 13-21. [ Links ]

Onyango, A.O, E. U Kenya, J. Mbithi, and M. O. Ng'ayo. 2009. Pathogenic Escherichia coli and food handlers in luxury hotels in Nairobi, Kenya. Travel Med. Infect. Dis. 7: 359-366. [ Links ]

Orberá, T. M. 2004. Acción perjudicial de las levaduras sobre los alimentos. Revista Cubana Salud Pública 30: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-34662004000300016&lng=es&nrm=iso > (Consulta: agosto de 2014). [ Links ]

Ramos-Elorduy, J. 2006. Threatened edible insects in Hidalgo, México and some measures to preserve them. J. Ethnobiol. 2: 1-10. [ Links ]

Ramos-Elorduy, J., J. J. Muñoz, y J. M. Pino. 1998. Determinación de minerales en algunos insectos comestibles de México. Rev. Soc. Quím. Méx. 42: 18-33. [ Links ]

Ramos-Elorduy, J., y J. M. Pino. 1990. Contenido calórico de algunos insectos comestibles de México. Rev. Soc. Quím. Méx. 34: 56-68. [ Links ]

Ramos-Elorduy, J., y J. M. Pino. 2001. Contenido de vitaminas de algunos insectos comestibles en México. Rev. Soc. Quím. Méx. 45: 66-67. [ Links ]

Ramos-Elorduy, J., and Pino J. M. 2002. Edible insects of Chiapas, Mexico. Ecology and Food Nutrition 41: 271-299. [ Links ]

Ramos Elorduy, J.; M. J. M. Pino y M. Conconi. 2006. Ausencia de una reglamentación y normalización de la explotación y comercialización de insectos comestibles en México. Folia Entomol. Mex. 45: 291-318. [ Links ]

Ramos-Elorduy, J., J. M. Pino, P. E. Escamilla, P. M. Alvarado, O. J. Lagunez, and de G. O. Ladrón. 1997. Nutritional value of edible insects from Oaxaca state, México. J. Food Compos. Anal. 10: 142-157. [ Links ]

Ramos-Elorduy, J., J. M. Pino, C. Márquez, F. Rincón, M. Alvarado, E. Escamilla, y H. Bourges. 1984. Protein content in some edible insects in México. J. Ethnobiol. 4: 61-72. [ Links ]

Ramos-Elorduy, J., J. M. Pino, y J. Morales de León 2002. Análisis químico proximal, vitaminas y nutrimento inorgánicos de insectos consumidos en el estado de Hidalgo México. Folia Entomol. Mex. 41: 15-29. [ Links ]

Ricolfe, J. S., B. R. Merino, , S. V. Marzo, M. T. Rabadan, y C. Martínez. 2008, Actitud hacia la gastronomía local de los turistas: dimensiones y segmentación de mercado. Pasos, Rev. Tur. Patrim. Cult. Núm. Especial Turismo Gastronómico y Enoturismo 6: 189-198. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1993. NOM-065-SSA1-1993. Establece las especificaciones de los medios de cultivo. Generalidades. Secretaría de Economía, Dirección General de Normas. México, 27 de febrero de 1995. México, D.F. 4 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-092-SSA1-1994. Bienes y Servicios. Métodos para la cuenta de bacterias aerobias en placa. Secretaría de Economía, Dirección General de Normas. México, 10 de noviembre de 1995. México, D. F. 7 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-093-SSA1-1994. Bienes y servicios. Prácticas de higiene y sanidad en la preparación de alimentos que se ofrecen en establecimientos fijos. Secretaría de Economía, Dirección General de Normas. México, 10 de mayo de 1995. México. D.F. 27 p. Derogada. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1994. Proyecto NOM-109-SSA1-1994. Bienes y Servicios. Procedimientos para la toma, manejo y transporte de muestras de alimentos para su análisis microbiológico. Secretaría de Economía, Dirección General de Normas. México, 26 de mayo de 1994. México. D.F. 5 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-110-SSA1-1994. Bienes y Servicios. Preparación y dilución de muestras de alimentos para su análisis microbiológico. Secretaría de Economía, Dirección General de Normas. México, 10 de mayo de 1995. México. D.F. 6 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-111-SSA1-1994. Bienes y Servicios. Método para la cuenta de mohos y levaduras en alimentos. Secretaría de Economía, Dirección General de Normas. México, 10 de mayo de 1995. México. D.F. 6 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-112-SSA1-1994. Bienes y Servicios. NOM-112-SSA1-1994., Bienes y Servicios. Determinación de bacterias coliformes. Técnica del número más probable. Secretaría de Economía, Dirección General de Normas. México, 10 de mayo de 1995. México. D.F. 16 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-113-SSA1-1994. Bienes y Servicios. Método para la cuenta de microorganismos coliformes totales en placa. Secretaría de Economía, Dirección General de Normas. México, 10 de mayo de 1995. México. D.F. 7 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 1995. NOM-114-SSA1-1994. Bienes y Servicios. Método para la determinación de Salmonella en alimentos. Secretaría de Economía, Dirección General de Normas. México, 10 de mayo de 1995. México. D.F. 27 p. [ Links ]

SE-DGN (Secretaría de Economía-Dirección General de Normas). 2009. NOM-251-SSA1-2009, Prácticas de higiene para el proceso de alimentos, bebidas o suplementos alimenticios. Secretaría de Economía, Dirección General de Normas. México, 8 de diciembre de 2009. México. D.F. 24 p. [ Links ]

Van Huis, A., J. Van Itterbeeck, H. Klunder, E. Mertens, A. Halloran, G. Muir, y P. Vantomme. 2013. Edible insects: future prospects for food and feed security. FAO Foresty Paper no. 171. Roma, Italia, 201 p. [ Links ]

Viesca, G. F. C., G. V. D. Barrera, y O. A. J. A. Juárez. 2012. La recolección, venta y consumo de insectos en Toluca, México y sus alrededores. Rev. Rosa Dos Ventos 4: 208-221. [ Links ]

Yen, A. L., Y. Hanboonsoong, and A. R. Van Huis. 2013. Capitulo 11: The Role of edible insects in human recreation and Tourism. In: The Management of Insects in Recreation and Tourism. Harvey L.H (Editor). Cambridge University Press. Reino Unido. pp: 169-197. [ Links ]

Received: October 2014; Accepted: November 2015

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons