SciELO - Scientific Electronic Library Online

 
vol.55 número6Some studies on safe maximum packing of live agents in crowds or containersCapillary penetration in cells with periodical corrugations índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de física

versão impressa ISSN 0035-001X

Resumo

BACA-LOPEZ, K.; HERNANDEZ-LEMUS, E.  e  MAYORGA, M.. Information-theoretical analysis of gene expression data to infer transcriptional interactions. Rev. mex. fis. [online]. 2009, vol.55, n.6, pp.456-466. ISSN 0035-001X.

The majority of human diseases are related with the dynamic interaction of many genes and their products as well as environmental constraints. Cancer (and breast cancer in particular) is a paradigmatic example of such complex behavior. Since gene regulation is a non-equilibrium process, the inference and analysis of such phenomena could be done following the tenets of non-equilibrium physics. The traditional programme in statistical mechanics consists in inferring the joint probability distribution for either microscopic states (equilibrium) or mesoscopic-states (non-equilibrium), given a model for the particle interactions (e.g. the potentials). An inverse problem in statistical mechanics, in the other hand, is based on considering a realization of the probability distribution of micro- or meso-states and used it to infer the interaction potentials between particles. This is the approach taken in what follows. We analyzed 261 whole-genome gene expression experiments in breast cancer patients, and by means of an information-theoretical analysis, we deconvolute the associated set of transcriptional interactions, i.e. we discover a set of fundamental biochemical reactions related to this pathology. By doing this, we showed how to apply the tools of non-linear statistical physics to generate hypothesis to be tested on clinical and biochemical settings in relation to cancer phenomenology.

Palavras-chave : Cancer genomics; information theory; molecular networks.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons