SciELO - Scientific Electronic Library Online

 
vol.52 número1Scholte waves on fluid-solid interfaces by means of an integral formulation índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Geofísica internacional

versão On-line ISSN 2954-436Xversão impressa ISSN 0016-7169

Resumo

NAVAR, José  e  LIZARRAGA-MENDIOLA, Liliana. Hydro-climatic variability and forest fires in Mexico's northern temperate forests. Geofís. Intl [online]. 2013, vol.52, n.1, pp.05-20. ISSN 2954-436X.

Global warming is likely modifying the hydrological cycle of forested watersheds. This report set as objectives to: a) assess the hydrological variables interception loss, I, potential and actual evapo-transpiration, E, Et, runoff, Q, and soil moisture content, θ; b) evaluate whether these variables are presenting consistent trends or oscillations that can be associated to global warming or climate variability; and c) relate θ to the number of wildfires and the burned area in Durango, Mexico. A mass balance approach estimated daily variables of the water cycle using sub-models for I and Et to calculate Q and θ for a time series from 1945 to 2007. Regression and auto-regressive and moving averaging (ARIMA) techniques evaluated the statistical significance of trends. The cumulative standardized z value magnified and ARIMA models projected statistically similar monthly and annual time series data of all variables of the water cycle. Regression analysis and ARIMA models showed monthly and annual P, I, E, and Et, Q, and θ do not follow consistent up or downward linear tendencies over time with statistical significance; they rather follow oscillations that could be adequately predicted by ARIMA models (r2 ≥ 0.70). There was a consistent statistical association (p ≤ 0.05) of θ with the number of wildfires and the area burned regardless of the different spatial scales used in evaluating these variables. The analysis shows seasonal variability is increasing over time as magnifying pulses of dryness and wetness, which may be the response of the hydrological cycle to climate change. Further research must center on using longer time series data, testing seasonal variability with additional statistical analysis, and incorporating new variables in the analysis.

Palavras-chave : regression analysis; autoregressive moving average models; precipitation; interception loss; evpo-transpiration; runoff; soil moisture content; forests fires; pests and diseases.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons