Serviços Personalizados
Journal
Artigo
Indicadores
- Citado por SciELO
- Acessos
Links relacionados
- Similares em SciELO
Compartilhar
Computación y Sistemas
versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546
Resumo
VERMA, Rakesh e LEE, Daniel. Extractive Summarization: Limits, Compression, Generalized Model and Heuristics. Comp. y Sist. [online]. 2017, vol.21, n.4, pp.787-798. ISSN 2007-9737. https://doi.org/10.13053/cys-21-4-2855.
Due to its promise to alleviate information overload, text summarization has attracted the attention of many researchers. However, it has remained a serious challenge. Here, we first prove empirical limits on the recall (and F1-scores) of extractive summarizers on the DUC datasets under ROUGE evaluation for both the single-document and multi-document summarization tasks. Next we define the concept of compressibility of a document and present a new model of summarization, which generalizes existing models in the literature and integrates several dimensions of the summarization problem, viz., abstractive versus extractive, single versus multi-document, and syntactic versus semantic. Finally, we examine some new and some existing single-document summarization algorithms in a single framework and compare with state of the art summarizers on DUC data.
Palavras-chave : Automatic summarization; extractive summarization.