SciELO - Scientific Electronic Library Online

 
vol.21 número4Knowledge Representation and Phonological Rules for the Automatic Transliteration of Balinese Script on Palm Leaf ManuscriptHybrid Attention Networks for Chinese Short Text Classification índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Computación y Sistemas

versão On-line ISSN 2007-9737versão impressa ISSN 1405-5546

Resumo

GOPALAN, Sindhuja  e  DEVI, Sobha Lalitha. Cause and Effect Extraction from Biomedical Corpus. Comp. y Sist. [online]. 2017, vol.21, n.4, pp.749-757. ISSN 2007-9737.  https://doi.org/10.13053/cys-21-4-2854.

The objective of the present work is to automatically extract the cause and effect from discourse analyzed biomedical corpus. Cause-effect is defined as a relation established between two events, where first event acts as the cause of second event and the second event is the effect of first event. Any causative constructions need three components, a causal marker, cause and effect. In this study, we consider the automatic extraction of cause and effect realized by explicit discourse connective markers. We evaluated our system using BIONLP/NLPBA 2004 shared task test data and obtained encouraging results.

Palavras-chave : Discourse relation; cause-effect; discourse connective; causal entity; discourse parser; named entity recognition.

        · texto em Inglês     · Inglês ( pdf )